scholarly journals Effect of Irrigation and Fertilization Levels on Mineral Composition of Cannabis sativa L. Leaves

2019 ◽  
Vol 47 (4) ◽  
pp. 1073-1080 ◽  
Author(s):  
Eleni WOGIATZI ◽  
Nikolaos GOUGOULIAS ◽  
Kyriakos D. GIANNOULIS ◽  
Christina-Anna KAMVOUKOU

A field experiment was conducted in central Greece to study the effect of two irrigation (I1: 100% ETo, I2: 60% ETo) and N-fertilization levels (N1: 244, N2: 184 kg ha-1), on the nutrients concentration of Cannabis sativa leaves (cv. ‘Fibranova’). The  N, K, Ca, Mg, P -concentration in the leaves was ranged by 2.8 to 3.51%, 1.8 to 2.57%, 1.96 to 2.17%, 0.86 to 0.88%, and 0.3 to 0.37% respectively, while by the micronutrients the iron showed the highest concentration that ranged by 129 to 139.8 mg kg-1dw. The treatment I1F1, where the highest level of irrigation and N -fertilization was applied, compared to the other treatments, showed the highest dry biomass yield, however, in the leaves the highest concentrations of N, K, Mn and Cu were not observed. Moreover, it was found that the N, K, Ca, Mg, P and Fe removal only by one ton dry biomass of leaves was ranged by 28 to 35.12 kg, 18.01 to 25.65 kg, 19.6 to 21.7 kg, 8.34 to 8.75 kg, 3.01 to 3.70 kg and 0.129 to 0.140 kg, respectively. These results could contribute optimal fertilizer application and therefore to the reduction of production costs of the crop.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********

2019 ◽  
Vol 47 (4) ◽  
pp. 1145-1152
Author(s):  
Mustafa CÜCE ◽  
Tuba BEKİRCAN ◽  
Abdul Hafeez LAGHARI ◽  
Münevver SÖKMEN ◽  
Atalay SÖKMEN ◽  
...  

A rapid micropropagation protocol was designed to produce Calamintha sylvatica plantlets by using nodal segments as explants for the shoot formation. 6-BA favored the highest shoot formation and biomass yield, whilst kinetin was found superior for the highest shoot length (38.97 ± 2.85 mm) and node numbers (2.89 ± 0.63). Rosmarinic acid was detected as major phenolic acid, ranging from 7.59 mg/100 g to 81.44 mg/100 g. Hexane extracts from natural and in vitro propagated plantlets showed activity only against Staphylococcus aureus ATCC 25923 with MIC values at 6.25 and 3.33 m/mL, respectively while in the latter case, extracts from natural plantlets exerted higher cytotoxic activity than those of micropropagated ones (IC50 values were 83 µg/mL and 98 µg/mL on HeLa cells, respectively). C. sylvatica showed high micropropagation performance and produced remarkable amount of rosmarinic acid in vitro as well as antimicrobial and cytotoxic effect.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


2019 ◽  
Vol 47 (4) ◽  
pp. 1252-1257
Author(s):  
Ying JIAN ◽  
Guolin WU ◽  
Donghui ZHOU ◽  
Zhiqun HU ◽  
Zhenxuan QUAN ◽  
...  

Wax apple (Syzygium samarangense) is an important tropical fruit tree cultivated in Southeast Asian. It produces red pear-like shape fruits. The fruit flesh is considered high in antioxidants, phenolics, and flavonoids that have a potential to contribute to the human healthy diet, and was proved to have anti-inflammatory and antimicrobial characteristics. To allow year-round marketing of high quality wax apple fruit, growers always perform shading to inhibit new flushes so as to repress vegetative growth and promote reproductive growth. To investigate the effect of shading on carbohydrates, wax apple trees were shaded with sun shade nets under field conditions. The effects of shading on shoot growth were studied and leaf carbohydrate levels of the trees were determined. The results showed that shading inhibit the the growth of the terminal shoots and promoted bud dormancy. Shading also reduced total soluble sugar, sucrose, glucose, fructose, and starch levels of leaves. The results suggested that shading reduced carbohydrate accumulation and repressed vegetative growth.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


1999 ◽  
Vol 15 (2) ◽  
pp. 10-13 ◽  
Author(s):  
Albert W. Simmonds

Author(s):  
Aharon Oren ◽  
George M. Garrity ◽  
Edward R. B. Moore ◽  
Iain C. Sutcliffe ◽  
Martha E. Trujillo

The International Journal of Systematic and Evolutionary Microbiology (IJSEM) will move to ‘true continuous publication’ during the first months of 2021 to modernize the workflow and align it with the current online-only nature of the journal. In the new format, articles will be cited using an article number rather than page numbering. The article number will be the Digital Object Identifier (DOI) suffix, i.e., the last six digits of the DOI. Benefits of the new system include streamlining in-house processes, hence, reducing time and costs, and speeding up the publication time of the final ‘Version of Record’. Because of the new format of the IJSEM, it is necessary to emend Rule 24b (2) and Note 1 paragraph 3 of Rule 27 of the International Code of Nomenclature of Prokaryotes (ICNP) to regulate matters of priority for papers published after January 2021. We also propose adding another example to Note 2 of Rule 33b to clarify how nomenclatural authorities of names published in the IJSEM from 2021 onward must be cited.


2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


2013 ◽  
Vol 42 (1) ◽  
pp. 35-39 ◽  
Author(s):  
AR Kanak ◽  
MJ Khan ◽  
MR Debi ◽  
ZH Khandakar ◽  
MK Pikar

The experiment was conducted to study the comparison on biomass production of fodder germplasm. Para (Brachiaria mutica Stapf.), German (Echinochloa crusgalli L.) and Dhal (Hymenachne pseudointerrupta C. Muell) grasses were cultivated in a completely randomized design (CRD). The whole area was divided into nine plots. The area of each unit plot was 6 m x 6 m. Number of cuttings were 16,000 /hectare where Plant to Plant distance was 16 cm and row and raw distance was 16 cm. Equal amount of organic and chemical fertilizer were applied in all cutting. The fodders were first harvested after 60 days of planting, second and third after successive 60 days of re-growth. The findings of the study showed that fresh biomass (p<0.01) and dry biomass yield (p<0.05) of three fodder germplasm differed significantly. Crude protein and organic matter yield were significant (p<0.01) only in the second cutting. German grass was showed significantly higher in CP and OM yield (p<0.01) at second cutting than other grasses. However, no significant effect on plant height was observed among three grasses. From the above findings it may be concluded that among the three fodder germplasm, German fodder showed best result in respect of biomass production. DOI: http://dx.doi.org/10.3329/bjas.v42i1.15772 Bang. J. Anim. Sci. 2013. 42 (1): 35-39


Sign in / Sign up

Export Citation Format

Share Document