scholarly journals Wavelet Design for Automatic Real-Time Eye Blink Detection and Recognition in EEG Signals

2019 ◽  
Vol 14 (3) ◽  
pp. 375-387
Author(s):  
Michael Gabriel Miranda ◽  
Renato Alberto Salinas ◽  
Ulrich Raff ◽  
Oscar Magna

The blinking of an eye can be detected in electroencephalographic (EEG) recordings and can be understood as a useful control signal in some information processing tasks. The detection of a specific pattern associated with the blinking of an eye in real time using EEG signals of a single channel has been analyzed. This study considers both theoretical and practical principles enabling the design and implementation of a system capable of precise real-time detection of eye blinks within the EEG signal. This signal or pattern is subject to considerable scale changes and multiple incidences. In our proposed approach, a new wavelet was designed to improve the detection and localization of the eye blinking signal. The detection of multiple occurrences of the blinking perturbation in the recordings performed in real-time operation is achieved with a window giving a time-limited projection of an ongoing analysis of the sampled EEG signal.

Author(s):  
Vladimir Bogatyrev ◽  
Stanislav Bogatyrev ◽  
Anatoly Bogatyrev

The possibilities of increasing the probability of timely service and reducing the average waiting time for requests for machine-to-machine exchange in distributed computer systems are investigated. Improving the reliability, timeliness and error-free transmission in automated distributed control systems focused on intelligent and cognitive methods of data and image analysis is fundamental in their real-time operation. The effect is achieved as a result of the reserved multipath transfers of packets critical to delays, at which their replication is provided with a task for each replica of the path (route) of sequential passage of network nodes. An analytical model is proposed for estimating the probability of timely delivery and the average total waiting time in the queues of route nodes with reserved and non-reserved packet transmission. The communication nodes that make up the data transmission route are represented by single-channel queuing systems with an infinite queue. The influence of the multiplicity of redundancy (replication) of transmissions on the probability of their timely maintenance is analyzed. The condition for the success of reserved transfers is that the accumulated total waiting in the queues of nodes that make up the path for at least one of the replicas of the packet should not exceed the given maximum allowed time. The efficiency of destroying expired packets in the intermediate nodes that make up the data transmission paths is shown. The existence of an optimal redundancy multiplicity critical to the total delay in the queues of packets is shown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


2015 ◽  
Vol 24 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Rosana Alves Dias ◽  
Filipe Serra Alves ◽  
Margaret Costa ◽  
Helder Fonseca ◽  
Jorge Cabral ◽  
...  

2018 ◽  
Author(s):  
J. I. Alvarez Claramunt ◽  
P. E. Bizzotto ◽  
F. Sapag ◽  
E. Ferrigno ◽  
J. L. Barros ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Shouhei Kidera ◽  
Luz Maria Neira ◽  
Barry D. Van Veen ◽  
Susan C. Hagness

Microwave ablation is widely recognized as a promising minimally invasive tool for treating cancer. Real-time monitoring of the dimensions of the ablation zone is indispensable for ensuring an effective and safe treatment. In this paper, we propose a microwave imaging algorithm for monitoring the evolution of the ablation zone. Our proposed algorithm determines the boundary of the ablation zone by exploiting the time difference of arrival (TDOA) between signals received before and during the ablation at external antennas surrounding the tissue, using the interstitial ablation antenna as the transmitter. A significant advantage of this method is that it requires few assumptions about the dielectric properties of the propagation media. Also the simplicity of the signal processing, wherein the TDOA is determined from a cross-correlation calculation, allows real-time monitoring and provides robust performance in the presence of noise. We investigate the performance of this approach for the application of breast tumor ablation. We use simulated array measurements obtained from finite-difference time-domain simulations of magnetic resonance imaging-derived numerical breast phantoms. The results demonstrate that our proposed method offers the potential to achieve millimeter-order accuracy and real-time operation in estimating the boundary of the ablation zone in heterogeneous and dispersive breast tissue.


2017 ◽  
Vol 5 (5) ◽  
pp. 320-325
Author(s):  
Ahmad T. Jaiad ◽  
Hamzah Sabr Ghayyib

Water is the most precious and valuable because it’s a basic need of all the human beings but, now a day water supply department are facing problem in real time operation this is because less amount of water in resources due to less rain fall. With increase in Population, urban residential areas have increased because of this reasons water has become a crucial problem which affects the problem of water distribution, interrupted water supply, water conservation, water consumption and also the water quality so, to overcome water supply related problems and make system efficient there is need of proper monitoring and controlling system. In this project, we are focusing on continuous and real time monitoring of water supply in IOT platform. Water supply with continuous monitoring makes a proper distribution so that, we can have a record of available amount of water in tanks, flow rate, abnormality in distribution line. Internet of things is nothing but the network of physical objects embedded with electronics, sensors, software, and network connectivity. Monitoring can be done from anywhere as central office. Using Adafruit as free sever data continuously pushed on cloud so we can see data in real time operation. Using different sensors with controller and raspberry pi as Mini computer can monitor data and also control operation from cloud with efficient client server communication.


Sign in / Sign up

Export Citation Format

Share Document