scholarly journals V2V Routing in VANET Based on Fuzzy Logic and Reinforcement Learning

Author(s):  
Wanli Zhang ◽  
Xiaoying Yang ◽  
Qixiang Song ◽  
Liang Zhao

To ensure the transmission quality of real-time communications on the road, the research of routing protocol is crucial to improve effectiveness of data transmission in Vehicular Ad Hoc Networks (VANETs). The existing work Q-Learning based routing algorithm, QLAODV, is studied and its problems, including slow convergence speed and low accuracy, are found. Hence, we propose a new routing algorithm FLHQRP by considering the characteristics of real-time communication in VANETs in the paper. The virtual grid is introduced to divide the vehicle network into clusters. The node’s centrality and mobility, and bandwidth efficiency are processed by the Fuzzy Logic system to select the most suitable cluster head (CH) with the stable communication links in the cluster. A new heuristic function is also proposed in FLHQRP algorithm. It takes cluster as the environment state of heuristic Q-learning, by considering the delay to guide the forwarding process of the CH. This can speed up the learning convergence, and reduce the impact of node density on the convergence speed and accuracy of Q-learning. The problem of QLAODV is solved in the proposed algorithm since the experimental results show that FLHQRP has many advantages on delivery rate, end-to-end delay, and average hops in different network scenarios.

2018 ◽  
Vol 7 (3) ◽  
pp. 1910
Author(s):  
R Brendha ◽  
V Sinthu Janita Prakash

Vehicular ad hoc network is a wireless communication technology that is used to provide safety and comfort transport on the roads. Routing algorithm design is one of the main challenging issues in VANET. This paper presents a Geographical Zone Based Cluster Head algorithm for Vehicular Ad hoc Networks (VANETs) to reduce the communication overhead generated by the Control Packets (CP). Depending on the area, the network can be sparsely or fully connected. The Geographical Zone Based Cluster Head Routing in Sparse network (GZCHRS) algorithm can endure network partition due to low node density in the sparse network and high node density in the urban network. This paper inspects the issues of VANETs in sparse networks. In this algorithm, the routing decision is based on vehicular density, velocity and link lifetime. The simulation results display that under rural network conditions, the Geographical Zone Based Cluster Head Routing algorithm performs well when compared to Light Weight Intersection based Traffic Aware Routing (LITAR) and Intersection-based Connectivity Aware Routing (ICAR).  


Author(s):  
S. Lahdya ◽  
T. Mazri

Abstract. For the past twenty years, the automotive industry and research organizations have been aiming to put fully autonomous cars on the road. These cars which can be driven without the intervention of a driver, use several sensors and artificial intelligence technologies simultaneously, which allow them to detect the environment in order to merge the information obtained to analyze it, decide on an action, and to implement it. Thus, we are at the dawn of a revolution in the world of transport and mobility, which leads us to ensure the movement of the autonomous car in a safe manner. In this paper, we examine certain attacks on autonomous cars such as the denial of service attack, as well as the impact of these attacks on the last two levels of vehicle autonomy.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 57
Author(s):  
Asha K S ◽  
Rajeshwari Hegde

Some Inherent Vehicular Ad Hoc Networks (VANETs) characteristics such as intermittent connectivity, highly dynamic topology, and hard delay constraints, make data communication a challenging task in these networks. Due to such peculiarities, in this paper we study the impact of using vehicles predicted locations as a metric for data communication in VANETs. This paper deals with PBERR (Parameter Based Efficient Reliable Routing) for VANETs, which is a multilevel routing algorithm. The focus of this algorithm is 100% data transmission from end to end with no loss or drop of data packets by selecting the reliable path. The proposed algorithm will use the data of the digital maps to limit the scope of message exchanges in the shortest path for vehicles between source and destination. Our results clearly demonstrate the efficiency of the proposed solution in different scenarios, especially in terms of Network throughput, Energy consumption and Average delay. 


2018 ◽  
Vol 14 (5) ◽  
pp. 155014771877848
Author(s):  
Bin Pan ◽  
Hao Wu ◽  
Jin Wang

In vehicular ad hoc networks, vehicle-to-vehicle–based broadcast can fast disseminate safety messages between vehicles within the whole network and hence expand drivers perception vision, which will reduce the accident probability and ensure the transportation reliability. As for fixed-period single-hop broadcast protocol, disseminating safety messages frequently can cause excessive network load. However, increasing period purely does not guarantee the real-time performance. In addition, exiting adaptive-period single-hop broadcast protocols also have limitations without considering synthetically various impact factors. Thus, how to design a single-hop broadcast protocol that can dynamically adjust the broadcast period according to the actual road condition is a pressing issue. A Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol in vehicular ad hoc networks is designed in this article, which provides a new solution for the dissemination of period safety messages. In this article, the impact of various factors (such as the number of one-hop neighbor nodes, vehicle speed, received signal strength index, and visibility) on the single-hop broadcast period has been analyzed. In view of each impact factor, we design corresponding membership function and fuzzy rules according to the specific scenarios and parameters. It realizes the adaptive changes of period safety messages broadcast period through the simulation of the proposed fuzzy logic inference system. Finally, we verify the performance of the Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol in a bidirectional four-lane highway scenario. Simulation results show that the proposed Fuzzy Logic Based Adaptive-period Single-hop Broadcast Protocol has obvious advantages in terms of network load ratio, average one-hop delay, and delivery ratio.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6092
Author(s):  
Zhonghui Pei ◽  
Xiaojun Wang ◽  
Zhen Lei ◽  
Hongjiang Zheng ◽  
Luyao Du ◽  
...  

Beacon messages and emergency messages in vehicular ad hoc networks (VANETs) require a lower delay and higher reliability. The optimal MAC protocol can effectively reduce data collision in VANETs communication, thus minimizing delay and improving reliability. In this paper, we propose a Q-learning MAC protocol based on detecting the number of two-hop neighbors. The number of two-hop neighbors in highway scenarios is calculated with very little overhead using the beacon messages and neighbor locations to reduce the impact of hidden nodes. Vehicle nodes are regarded as agents, using Q-learning and beacon messages to train the near-optimal contention window value of the MAC layer under different vehicle densities to reduce the collision probability of beacon messages. Furthermore, based on the contention window value after training, a multi-hop broadcast protocol combined with contention window adjustment for emergency messages in highway scenarios is proposed to reduce forwarding delay and improve forwarding reliability. We use the trained contention window value and the state information of neighboring vehicles to assign an appropriate forwarding waiting time to the forwarding node. Simulation experiments are conducted to evaluate the proposed MAC protocol and multi-hop broadcast protocol and compare them with other related protocols. The results show that our proposed protocols outperform the other related protocols on several different evaluation metrics.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Amolkirat Singh ◽  
Guneet Saini

Many people lose their life and/or are injured due to accidents or unexpected events taking place on road networks. Besides traffic jams, these accidents generate a tremendous waste of time and fuel. Undoubtedly, if the vehicles are provided with timely and dynamic information related to road traffic conditions, any unexpected events or accidents, the safety and efficiency of the transportation system with respect to time, distance, fuel consumption and environmentally destructive emissions can be improved. In the field of computer and information science, Vehicular Ad hoc Network (VANET) have recently emerged as an effective tool for improving road safety through propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. VANET is a research area which is in more demand among the researchers, the automobile industries and scientists to discover about the loopholes and advantages of the vehicular networks so that efficient routing algorithms can be developed which can provide reliable and secure communication among the mobile nodes.In this paper, we propose a Groundwork Based Ad hoc On Demand Distance Vector Routing Protocol (GAODV) focus on how the Road Side Units (RSU’s) utilized in the architecture plays an important role for making the communication reliable. In the interval of finding the suitable path from source to destination the packet loss may occur and the delay also is counted if the required packet does not reach the specified destination on time. So to overcome delay, packet loss and to increase throughput GAODV approach is followed. The performance parameters in the GAODV comes out to be much better than computed in the traditional approach.


Sign in / Sign up

Export Citation Format

Share Document