QUANTITATIVE PATTERNS OF LEAF EXPANSION: COMPARISON OF NORMAL AND MALFORMED LEAF GROWTH IN VITIS VINIFERA CV. RUBY RED

1986 ◽  
Vol 73 (6) ◽  
pp. 832-846 ◽  
Author(s):  
Sue D. Wolf ◽  
Wendy Kuhn Silk ◽  
Richard E. Plant
1999 ◽  
Vol 47 (3) ◽  
pp. 147-152
Author(s):  
Shimon Lavee ◽  
Elizabeth Van Volkenburgh ◽  
Robert E. Cleland

The dependence of bean (Phaseolus vulgaris L. cv. Contender) leaf unfolding and expansion on light has been explored in intact and excised plants by varying the duration and timing of exposure to white light. Plants were grown for 10 days in dim red light (RL), and then some were excised. Both the intact and the excised plants were then exposed to varying white light (WL) treatments. In continuous WL, leaf unfolding began after 8 h, and was maximal after 36 h. For plants exposed to short WL treatments, as little as 2 h WL elicited partial unfolding when leaves were returned to RL and measured after 60 h. The relative rate of leaf elongation was most rapid during the first 2 h of WL and it rapidly decreased during the following 6–8 h. An 8 h exposure to WL followed by 52 h RL produced only a slightly lower leaf expansion than continuous WL for 32 h. Leaf elongation after 24 h constant WL irradiance was no longer light-dependent. The response of leaves on excised plants to WL was progressively less if treatment was delayed for 24 h after excision. In contrast, leaves on intact plants did not lose their ability to respond to light even after 48 h in the dark. The ability of leaves on intact or excised plants to elongate in RL decayed rapidly after day 10. These results indicate that light-stimulated leaf expansion in beans is mediated by some factors whose transport to the leaves is influenced by the presence of roots.


Revista CERES ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ricardo Antonio Marenco ◽  
Francinete de Freitas Sousa ◽  
Marcilia Freitas de Oliveira

ABSTRACT Munguba (Pseudobombax munguba) is a tree often found in low-land forests of the Amazon region, and there is a paucity of data regarding its ecophysiology. The aim of this work was to determine photosynthetic rates and growth of munguba saplings and to describe leaf phenology of a munguba tree. In greenhouse-grown saplings, diameter growth, leaf expansion, photosynthesis and stomatal conductance were determined. To describe the relationship between photosynthesis and leaf expansion, regression analysis was used. It was also described the leaf phenology of an adult tree by observing foliage changes at one-week intervals for two years. The leaves completed their expansion in 18 days, and leaf greening was completed in 40 days. Photosynthesis positively correlated with leaf expansion, but there was no correlation between stomatal conductance and leaf growth. Growth in diameter was 1.8 mm month‒1. Relative growth rate was low, 0.010 g g-1 day-1. In the adult tree, leaf shedding was concentrated in July-August and by the second week of September the tree had already produced new leaves. Leaf longevity of munguba is about 11 months. It is hypothesized that leaf phenology of munguba is associated with the increased solar radiation of the dry season.


2004 ◽  
Vol 31 (9) ◽  
pp. 903 ◽  
Author(s):  
Ian C. Dodd ◽  
Chuong Ngo ◽  
Colin G. N. Turnbull ◽  
Christine A. Beveridge

The rms2 and rms4 pea (Pisum sativum L.) branching mutants have higher and lower xylem-cytokinin concentration, respectively, relative to wild type (WT) plants. These genotypes were grown at two levels of nitrogen (N) supply for 18–20 d to determine whether or not xylem-cytokinin concentration (X-CK) or delivery altered the transpiration and leaf growth responses to N deprivation. Xylem sap was collected by pressurising de-topped root systems. As sap-flow rate increased, X-CK declined in WT and rms2, but did not change in rms4. When grown at 5.0 mm N, X-CKs of rms2 and rms4 were 36% higher and 6-fold lower, respectively, than WT at sap-flow rates equivalent to whole-plant transpiration. Photoperiod cytokinin (CK) delivery rates (the product of transpiration and X-CK) decreased more than 6-fold in rms4. Growth of plants at 0.5 mm N had negligible (< 10%) effects on transpiration rates expressed on a leaf area basis in WT and rms4, but decreased transpiration rates of rms2. The low-N treatment decreased leaf expansion by 20–25% and expanding leaflet N concentration by 15%. These changes were similar in all genotypes. At sap-flow rates equivalent to whole-plant transpiration, the low N treatment decreased X-CK in rms2 but had no discernible effect in WT and rms4. Since the low N treatment decreased transpiration of all genotypes, photoperiod CK delivery rates also decreased in all genotypes. The similar leaf growth response of all genotypes to N deprivation despite differences in both absolute and relative X-CKs and deliveries suggests that shoot N status is more important in regulating leaf expansion than xylem-supplied cytokinins. The decreased X-CK and transpiration rate of rms2 following N deprivation suggests that changes in xylem-supplied CKs may modify water use.


1999 ◽  
Vol 47 (4) ◽  
pp. 231-236
Author(s):  
Shimon Lavee ◽  
Elizabeth Van Volkenburgh ◽  
Robert Cleland E.

The effect of light intensity on primary bean leaf unfolding and elongation was studied with intact and excised 10-day-old plants grown under red light. Continuous light of 40 μmol; m−2S−1 was enough to induce maximal leaf expansion both on intact and excised bean plants. Lower light intensities had a partial effect. The growth rate during the first 24 h in light was linearly related to light intensity up to 130 μmol; m−2S−1, although this light intensity was already supra-optimal for final leaf size. The minimal amount of light energy needed for full leaf expansion was about 15 mol photons m−2. The mode of light application, level of intensity, and irradiance duration were not critical when the total energy requirement was fulfilled. Under insufficient light applications for full leaf expansion, interrupted irradiance and longer low light intensity application induced leaf elongation more efficiently. Generally, the effect of different white light intensities on primary bean leaf expansion was the same on both intact and excised red-light-grown plants.


1986 ◽  
Vol 13 (1) ◽  
pp. 143 ◽  
Author(s):  
R Munns ◽  
A Termaat

This paper discusses whole-plant responses to salinity in order to answer the question of what process limits growth of non-halophytes in saline soils. Leaf growth is more sensitive to salinity than root growth, so we focus on the process or processes that might limit leaf expansion. Effects of short-term exposure (days) are considered separately from long-term exposure (weeks to years). The answer in the short term is probably the water status of the root and we suggest that a message from the root is regulating leaf expansion. The answer to what limits growth in the long term may be the maximum salt concentration tolerated by the fully expanded leaves of the shoot; if the rate of leaf death approaches the rate of new leaf expansion, the photosynthetic area will eventually become too low to support continued growth.


2018 ◽  
Vol 165 (4) ◽  
pp. 746-754 ◽  
Author(s):  
Esther Hernández‐Montes ◽  
Magdalena Tomás ◽  
José M. Escalona ◽  
Josefina Bota ◽  
Hipolito Medrano

2006 ◽  
Vol 84 (9) ◽  
pp. 1496-1502 ◽  
Author(s):  
Linda J. Walton ◽  
Leonid V. Kurepin ◽  
David M. Reid ◽  
C.C. Chinnappa

Plant ecotypes of Stellaria longipes Goldie from competitive, shade-adapted prairie habitat and less competitive, nonshaded alpine habitat were subjected to shortened or extended photoperiod conditions. Increasing daylength was positively correlated to increased stem elongation in both ecotypes. Leaf length and area for shade (prairie) plants was significantly altered with increased photoperiods, whereas sun (alpine) plants exhibited minimal leaf expansion in response to increased photoperiod. Increased ethylene evolution in the alpine genotype during rapid stem elongation and extended photoperiods suggests that ethylene plays a growth regulatory role in this sun-adapted genotype. The prairie genotype evolved less ethylene during these same periods, indicating either a diminished requirement for elevated ethylene to effect elongation and leaf expansion responses or possibly increased ethylene sensitivity because of interactions with other hormones, such as gibberellin or auxin. The sun genotype consistently produced more ethylene than the shade genotype under all photoperiod treatments. We conclude that photoperiod alters stem elongation and leaf expansion responses; similar trends were observed for extended photoperiods as were observed for shaded conditions, specifically low light intensity (photosynthetically active radiation) conditions. Further, ethylene levels altered during these responses, especially in sun-adapted alpine plants, which suggests that ethylene is involved in these growth responses.


1997 ◽  
Vol 75 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Siew Hwee Lee ◽  
David M. Reid

The possible role of ethylene in leaf expansion of the primary leaves of sunflower plants (Helianthus annuus) was studied. Our lowest application of ethephon promoted expansion of primary leaves. Higher concentrations of ethephon, and a range of concentrations of 1-aminocyclopropane-1-carboxylic acid, increased endogenous ethylene concentration and caused a reduction in the area of the primary leaves. The inhibition in leaf expansion induced by ethephon and 1-aminocyclopropane-1-carboxylic acid was reversed by pretreating the plants with an inhibitor of ethylene action, namely silver thiosulphate. Treating leaves with lower concentrations of aminoefhoxyvinylglycine reduced ethylene production and stimulated leaf expansion. This effect of aminoethoxyvinylglycine could be nullified by pretreating the plants with 1-aminocyclopropane-1-carboxylic acid. Treatment with silver thiosulphate enhanced leaf expansion. This indicates that endogenous ethylene normally plays a significant role in leaf expansion. Flooded and gravistimulated plants produced more ethylene and had smaller leaves. This could suggest that the increased ethylene is the main cause of the slowed leaf growth, however, only in some cases were we able to partially reverse the effect of flooding with silver thiosulphate. This indicates that there are probably many factors, in addition to increased ethylene, that inhibit leaf expansion in flooded and gravistimulated plants. Key words: ethylene, leaf expansion.


2016 ◽  
Vol 43 (10) ◽  
pp. 986 ◽  
Author(s):  
Dennis H. Greer ◽  
Mark M. Weedon

A hydrocooling system provided canopy temperature control of Vitis vinifera L. cv. Semillon vines at set points of 30, 35 and 40°C. The impacts on vegetative and reproductive growth over the growing season were assessed. Dynamics and rates of leaf expansion, bunch biomass and sugar accumulation were strongly affected by canopy temperatures – being highest at 30°C and lowest at 40°C. Leaf and stem biomass accumulation at 40°C was detrimentally affected but was otherwise little affected by temperature. Leaf expansion was earliest, leaf sizes greatest and rates of expansion all optimal at 30°C and all were strongly temperature dependent. Bunch biomass accumulation was earliest at 35°C but amount of biomass in bunches and rates were both highly temperature dependent and optimal at 30°C. Rates of sugar accumulation and total amounts accumulated at harvest were both highly temperature-dependent processes: fastest and greatest at 30°C. Many of the temperature-dependent processes decreased in rates and amounts linearly between 30 and 40°C. Despite the effects of temperature on bunch and berry growth, there were no treatment effects on the yield per vine. The study confirms that the threshold temperature for most processes was 35°C, where some depreciation in dry matter and sugar accumulation occurred, whereas 40°C was detrimental to all growth processes.


Sign in / Sign up

Export Citation Format

Share Document