scholarly journals Ecological anatomy of Eugenia luschnathiana (O.Berg) Klotzsch ex B.D.Jacks. (Myrtaceae) leaves in the Restinga region, state of Ceara

2018 ◽  
Vol 40 (4) ◽  
Author(s):  
Viviane de Oliveira Thomaz Lemos ◽  
Eliseu Marlônio Pereira de Lucena ◽  
Oriel Herrera Bonilla ◽  
Bruno Edson-Chaves ◽  
Marina Arruda de Castro ◽  
...  

Abstract Eugenia luschnathiana (O.Berg) Klotzsch ex B.D.Jacks. (Myrtaceae) species, commonly known as pitomba-da-baía, occurs in Restinga region in the state of Ceara and has medicinal potential. The present study aimed to characterize the anatomy of E. luschnathiana leaves in the rainy and dry seasons, as well as in the sun and shade in the Restinga region of Ceara, aiming to generate useful information to understand the adaptive value of morphoanatomic responses to the natural conditions of occurrence of the species. Collections were performed at the State Botanical Park of Ceara, and leaves were completely expanded and fixed in FAA70, being replaced by 70% ethanol after 24 h. Samples were submitted to standard plant anatomy methodologies in order to qualitatively and quantitatively analyze the leaf blade and petiole structures. As a result, there were differences among sun and shade leaves, rain and dry. In relation to luminosity, most determinations were higher in sun leaves: trichome density and frequency; trichome scar frequency; stomatal frequency, stomatal index, length, width and area of stomata; thickness of leaf blade, mesophyll, cuticle, epidermis, palisade and spongy parenchyma; length and width of the central vein, area of the central vein vascular bundle, number of secretory cavities in the central vein; length and width of the petiole, area of the petiole vascular bundle; amount and area of secretory cavities in the petiole. In shade leaves, only the number of druses in the central vein and petiole were larger. Regarding seasonality, all determinations were higher in the rainy season, except for the length and width of the central vein; number of druses in the central vein and petiole; length of the petiole, area of the vascular bundle and secretory cavities of the petiole. Therefore, it could be concluded that E. luschnathiana has great acclimative capacity to conditions of intense luminosity and periods of water deficit.

2015 ◽  
Vol 9 (1) ◽  
pp. 143-148
Author(s):  
Minshen Huang ◽  
Lihua Zhang ◽  
Shudong Wei ◽  
Qi Zeng ◽  
Haichao Zhou ◽  
...  

Seasonal dynamics of total phenolics (TP), extractable condensed tannins (ECT), protein-bound condensed tannins (PBCT), fiber-bound condensed tannins (FBCT), total condensed tannins (TCT) and nitrogen contents in sun and shade leaves of Aegiceras corniculatum were studied in the Zhangjiang Estuary, Fujian Province, China. The contents of TP, ECT and TCT in the sun leaves were significantly higher than those in the shade leaves through the season. The N content in sun leaves was higher than that in shade leaves in the autumn, while it was lower in the summer, and there was no significant difference in the winter and spring. With the respect to the P through the year, P content in the sun leaves was different between seasons, with the highest in winter and the lowest in summer. In addition, the TP:N and ECT:N ratios in sun leaves were significantly higher than those in shade leaves except in autumn. High tannin levels and TP:N and ECT:N ratios in the sun leaves not only can reduce oxidative stress, but also improve the ability of resisting plant diseases and insect pests.


Author(s):  
Camilla Reis Augusto da Silva ◽  
Marcelo Dos Santos Silva ◽  
Léa Maria Dos Santos Lopes Ferreira ◽  
Kelly Regina Batista Leite ◽  
Lazaro Benedito da Silva

The basis of differentiation between sun and shade leaves is related to different light intensities. In order to understand the adaptability of the leaves of Rhizophora mangle L., associated with different lighting conditions, leaves were collected from the upper peripheral six individuals (sun leaves) and the lower region of the same internal (shade leaves). The variables analyzed leaf thickness, palisade parenchyma, adaxial and abaxial epidermis, adaxial and abaxial cuticle, stomatal density and index. Measurements were made ??on microscope equipped with ocular micrometer. Sun leaves were lower and with more xeromorphic characteristics, such as increased thickness of the cuticle and the adaxial and abaxial epidermis. The palisade parenchyma and limbus showed up thicker than shade leaves, with no significant difference between the cuticle of the abaxial surface. It was also observed a higher frequency of stomata per mm², an average of 70/mm², while shade leaves showed 47/mm², with no differences between length and width. Differences between the sun leaves and shade leaves indicate adaptive capacity of this species to remain active at different light conditions.


2016 ◽  
Vol 38 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Alisson Rodrigo Souza Reis ◽  
Alessandra Doce Dias de Freitas ◽  
Noemi Vianna Martins Leão ◽  
Benedito Gomes dos Santos Filho

Abstract: Apuleia molaris spruce ex benth, commonly known in Brazil as "amarelão," is a fast-growing forest plant with a potential for use in reforestation; however, there is little information about the physiology and morphology of its fruits, seeds, and seedlings. Thus, the objective of this work was to describe the morphology of the fruits, seeds, and seedlings, in addition to the anatomic patterns of seedlings, as a contribution to the technical-scientific knowledge and production of amazonian species for reforestation in the state of Pará. For this purpose, the morphological descriptions followed the parameters from specialized literature and the common techniques used in plant anatomy. The species presents leguminous fruit; seeds with pleurogram, average dimensions of 51.21, 21.33, and 2.09 mm length, width, and thickness, respectively; and seedlings with eophyll and pinnate metaphylls, cordiform, phanerocotylar germination, epigaeous, and foliaceous. Eophylls and metaphylls present uniseriate epidermis, collateral and dorsiventral vascular bundle. The morphological characteristics may help in field identification and in the identification of young plants, aiding the production of seedlings of this species. Furthermore, anatomically, the hypocotyl has no striking differences from the root.


2019 ◽  
Vol 41 (6) ◽  
Author(s):  
Viviane de Oliveira Thomaz Lemos ◽  
Eliseu Marlônio Pereira de Lucena ◽  
Oriel Herrera Bonilla ◽  
Bruno Edson-Chaves

Abstract The species Eugenia punicifolia (Kunth) DC. (myrtle) occurs in the coastal region of the state of Ceará and has ecological and medicinal importance. This study aimed to characterize the leaf anatomy of myrtle (E. punicifolia) in the rainy and dry seasons, as well as in the sun and shade in the restinga region of the state of Ceará and to contribute to the understanding of the morphoanatomic variations in response to the natural conditions of the occurrence of this species. For this, collections of fully expanded leaves were performed at the Botanical Park of Ceará and fixed in FAA70, being replaced by 70% ethanol after 24 hours. The usual anatomical procedures were then performed in order to qualitatively and quantitatively analyze the leaf blade, petiole and epidermis structures. As a result, it was found that myrtle has xeromorphic characteristics such as thick cuticle, hypoestomatic leaf and sclerenchyma fibers in the median vein vascular bundles. It was concluded that E. punicifolia has great plasticity to adjust well under the analyzed conditions.


2013 ◽  
Vol 85 (2) ◽  
pp. 561-574 ◽  
Author(s):  
FERNANDA REINERT ◽  
MARCOS V. LEAL-COSTA ◽  
NICIA E. JUNQUEIRA ◽  
ELIANA S. TAVARES

Sun and shade plants are often discriminated by a number of sun- and shade-type anatomies. Nonetheless, we propose that among tank-bromeliads, changes in rosette architecture satisfy the requirements for coping with contrasting light levels. The tank-bromeliad Neoregelia cruenta naturally colonises sub-habitats ranging from full exposure to direct sunlight, to shaded environments in sand ridge plains. We quantified anatomical and morphological traits of leaves and rosettes of N. cruenta grown under sun and shade conditions. Cells with undulated lateral walls within the water parenchyma are for the first time described for the family. Under high light, leaf blades were wider, shorter, and yellowish. The rosette diameter of sun plants was less than half that of shade plants. Sun leaves overlapped with neighbouring leaves for most of their length, forming a cylindrical rosette where water accumulates. Shade leaves only overlapped in the centre of the rosette. Most anatomical traits were similar under both growth conditions. Stomata were absent from the base of sun leaves, which is probably explained by limited gas exchange at the base of the tight sun-type rosette. Data suggest that the ability of N. cruenta to acclimate to sun and shade is better explained by changes in rosette architecture than by leaf anatomy.


1996 ◽  
Vol 51 (7-8) ◽  
pp. 441-453 ◽  
Author(s):  
P. He ◽  
A. Radunz ◽  
K. P. Bader ◽  
G. H. Schmid

Three months old plants of the Chinese tung-oil tree Aleurites montana were cultivated for 4 months in air containing an increased amount of 700 ppm CO2. During the exposure to 700 ppm CO2 the plants exhibited a considerably stronger growth (30-40% ) in comparison to the control plants (grown in normal air). In these CO2-plants during the entire analyzing period the amount of soluble proteins, of soluble sugars and the chlorophyll content were lower than in control plants. The protein content, referred to leaf area, increased during this time in both plant types by approx. 50% but with a different time course. The increase is faster in CO2-plants compared to control plants, and ends up with similar values in both plants after 4 months. No difference is seen between sun and shade leaves. The chlorophyll content in both sun and shade leaves is 20% lower in CO2-plants. Whereas the chlorophyll content in sun leaves stays constant during developm ent, it has increased in shade leaves by 20% at the end of the 4 months period. The content of soluble sugars is lower in CO2-plants compared to control plants. The difference is bigger in sun leaves than in shade leaves. The ribulose 1.5-bisphosphate carboxylase/oxygenase content almost doubles within the experimentation period, but seems to be subject to large variations. CO2-plants contain in general less ribulose 1.5-bisphosphate carboxylase/oxygenase than control plants. The content of coupling factor of photophosphorylation is 20% lower in CO2-plants when compared to control plants and remains during development more constant in CO2-plants. The molecular structure of the photosystem II-complex undergoes under the influence of the increased CO2-content a quantitative modification. The light harvesting complex (LHCP) and the extrinsic peptide with the molecular mass of 33 kDa increase in CO2-plants. Gassing with SO2 (0.3 ppm in air) leads to a strong damage of the plants. The damaging influence is already seen after 6 days and leads to a partial leaf-shedding of the tree. In the visually still intact remaining leaves the chlorophyll content referred to unit leaf area decreases by 63%, that of soluble sugars by 65%, the content of soluble proteins and that of Rubisco decrease by 26% and 36% respectively. The light harvesting complex and the chlorophyll- binding peptides (43 and 47 kDa) increase whereas the extrinsic peptides decrease. It looks as if the simultaneous application of SO2 (0.3 ppm) and increased CO2 (700 ppm) releaves the damaging effect of SO2. Plant growth does not exhibit a difference in comparison to control plants. Soluble proteins and chlorophyll increase by 27% and 33% and the ribulose 1.5-bisphosphate carboxylase/oxygenase content as well as that of soluble sugars increases by 18 respectively 14%. The peptide composition of photosystem II shows a quantitative modification. The LHCP increases and the chlorophyll-binding peptides and the peptides with a molecular mass smaller than 24 kDa are reduced. The quantity of extrinsic peptides appears unchanged. Ribulose 1,5-bisphosphate carboxylase/oxygenase and the CF1-complex of Aleurites are immunochemically only partially identical to the corresponding enzymes of Nicotiana tabacum as demonstrated by tandem-cross-immune electrophoresis.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 209 ◽  
Author(s):  
Aisha Idris ◽  
Alona C. Linatoc ◽  
Aisha M. Aliyu ◽  
Surayya M. Muhammad ◽  
Mohd Fadzelly Bin Abu Bakar

Light affects the growth and development of plants by influencing the physical appearance of one leaf as well as the appearance of the whole plant. Plant photosynthesis, stomata density, and pigment contents are all influenced by light The objective of this research is to determine the effect of light on the photosynthesis, pigment content and stomatal density of Sun and Shade Leaves of Vernonia amygdalina. Gas exchange was measured using Li-6400 and the data obtained was used to create a light response curve where parameters including light saturation point (LSP), light compensation point (LCP) and apparent quantum yield were estimated. Photosynthetic pigment were quantified spectrophotometrically.  Moreover, the stomatal density was counted under light microscope, after making a nail polish impression of the leaf. The results discovered shows that as the light intensity increases, the gas exchange and stomatal density increases while the photosynthetic pigment of the studied plant decreases (P<0.05). In addition, LSP and LCP increases with increasing light intensity. Besides, statistically significant negative correlation (P<0.05) was achieved among stomatal density and transpiration rate thereby leading to a conclusion that sun leaves of Vernonia amygdalina contribute the highest assimilation rate to the plant than shade leaves. Yet, the higher stomatal density of sun leaves provides water saving to the plant.


1991 ◽  
Vol 21 (3) ◽  
pp. 300-305 ◽  
Author(s):  
N. J. Smith

Salal (Gaultheriashallon Pursh) leaf biomass, leaf area index, specific leaf area, and leaf morphology were examined in 13 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands from 37 destructively measured 1-m2 quadrats. In response to light and stand overstory density, salal shoots produced either mainly sun leaves or mainly shade leaves. Sun leaves were associated with sunflecks in open-grown or variably stocked stands. Shade leaves were associated with diffuse light under denser stands. Sun-leaf quadrats had mean specific leaf areas less than 90 cm2/g; shade-leaf quadrats had mean specific leaf areas greater than 90 cm2/g. Sun leaves were narrower, with average leaf widths less than 5 cm. Quadrat salal leaf biomass and leaf area index peaked at Curtis' metric relative density 5.9, which corresponded to an availability of 15% of global photosynthetically active radiation. Sun-leaf quadrats occurred below relative density 5; shade-leaf quadrats occurred above relative density 4. A mixture of sun- and shade-leaf quadrats occurred between about relative density 4 and 5, depending on the uniformity of stocking.


1981 ◽  
Vol 59 (8) ◽  
pp. 1393-1396 ◽  
Author(s):  
Stanley B. Carpenter ◽  
Naomi D. Smith

A linear displacement transducer was used to measure the leaf thickness of sun and shade leaves collected from trees growing in the mountain and eastern coalfield region of Kentucky. Leaf thickness measurements are presented for 64 southern Appalachian forest species which occupy all strata of the forest communities. Leaf thickness varied from 117.1 μm in Hydrangea arborescans to 473.9 μm in Ilex opaca. In all species sun leaves were thicker than shade leaves. Species considered tolerant of shade had significantly thicker sun and shade leaves than intolerant species when shrubs were included. When shrubs were excluded the sun and shade leaves of tolerant species were thinner than sun and and shade leaves of intolerant species. For all species including shrubs, sun leaf thickness for the tolerant, medium, and intolerant classes averaged 220.1, 183.5, and 213.3 μm, respectively. Although there appeared to be differences in leaf thickness between species inhabiting xeric and mesic sites, these differences were not statistically significant. Variation in sun leaf thickness within the genus Quercus ranged from 130.6 μm in Quercus alba to 306.5 μm in Quercus stellata. Shrub species generally had the thickest leaf blades.


Though numerous investigators have recorded observations on the number of stomata present in various species, comparatively little is known respecting the causes of their numerical variation. Studies on the “sun” and “shade” leaves of woodland plants brought to light the striking differences which the numerical frequency of stomata may exhibit in leaves of the same species when growing in different environments and even in different leaves of the same individual. Various hypotheses have been put forward to explain the larger number of stomata in sun-leaves. These will be considered later, but we may note here the apparent discrepancy with the observations of Ziegeler that the leaves of the more xerophytic Carices possess fewer stomata than the leaves of those species characteristic of damper habitats. Spitzer obtained similar results from an examination of the Grasses and Adamson appears to have arrived at a similar conclusion with regard to the various species of Veronica studied by him (“Comparative anatomy of the leaves of certain species of Veronica,” Veronica " ‘Linn. Soc. Jour., Bot.,’ vol. XL, pp. 247-274, 1912).


Sign in / Sign up

Export Citation Format

Share Document