scholarly journals Can Soil Penetration Resistance and Bulk Density Be Determined in a Single Undisturbed Sample?

2015 ◽  
Vol 39 (3) ◽  
pp. 763-766
Author(s):  
Carolina Fernandes ◽  
Roniram Pereira da Silva ◽  
Adolfo Valente Marcelo

Soil quality indicators such as penetration resistance (PR) and bulk density (BD) are traditionally determined in a single undisturbed soil sample. The aim of this study was to assess the effect of PR measurements of undisturbed samples on the determination of BD in the same sample of two soils differing in clay contents. To this end, samples were collected from the 0.00-0.10 and 0.10-0.20 m layers of two soils of clayey and very clayey texture. Volumetric rings were used to collect a total of 120 undisturbed soil samples from each soil layer that were divided into two subsets containing 60 units each. One sample set, designated “perforated samples”, was used to determine PR and BD in the same undisturbed sample; the other, named “intact samples”, was used to determine BD only. Bulk density values for perforated and intact samples were compared by analysis of variance, using a completely randomized experimental design. Means were compared by the t-test at 5 %. The BD values for the clayey soil were similar in perforated and intact samples from the two layers. However, BD of the very clayey soil was lower in the perforated than in the intact samples at both depths. Therefore, PR and BD in clayey soils can be accurately determined in the same undisturbed sample whereas in very clayey soils, different samples are required for this purpose.

2019 ◽  
Vol 49 (2) ◽  
pp. 164-178 ◽  
Author(s):  
Eric R. Labelle ◽  
Benjamin J. Poltorak ◽  
Dirk Jaeger

Forest soils often exhibit low bearing capacities and as a result are often incapable of withstanding high axle loads. In New Brunswick, Canada, five different brush amounts (0, 5, 10, 15, and 20 kg·m–2) were applied as brush mats on machine operating trails during a cut-to-length harvesting operation in a softwood stand to analyze soil disturbance as a result of off-road forest harvesting machine traffic. Soil absolute and relative bulk density and soil penetration resistance measurements were completed below the varying brush mats both before and after forwarding. The mean differences between pre- and post-impact absolute soil dry bulk density values recorded on track areas were 0.24 g·cm–3 for 5–20 kg·m–2 of brush and 0.33 g·cm–3 for 0 kg·m–2 of brush. On average, 40.5%, 17.9%, 14.3%, 15.5%, and 3.6% of all post-forwarding measurements exceeded the threshold for growth-impeding soil bulk density (80% standard Proctor density) for 0, 5, 10, 15 and 20 kg·m–2 of brush, respectively. Soil penetration values >3.0 MPa represented 23.7%, 15.0%, 9.4%, 4.6%, and 0.7% of all post-forwarding test plots with 0, 5, 10, 15, and 20 kg·m–2 of brush, respectively. The results suggest that softwood brush mats of 10 to 20 kg·m–2 placed on machine operating trails play a considerable role in reducing forwarder-induced soil compaction and penetration resistance.


2015 ◽  
Vol 29 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Michel Keisuke Sato ◽  
Herdjania Veras de Lima ◽  
Pedro Daniel de Oliveira ◽  
Sueli Rodrigues

Abstract The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.


2012 ◽  
Vol 36 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Henrique Debiasi ◽  
Julio Cezar Franchini ◽  
Vanderlei Rodrigues da Silva

The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR), using a reference value of gravimetric soil water content (U). For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox), at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes); in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD). Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.


2021 ◽  
Vol 24 (1) ◽  
pp. 9-13
Author(s):  
Eugene Balashov ◽  
Sergio Pellegrini ◽  
Paolo Bazzoffi

Abstract The objective of the study was to quantify the differences in soil physical indicators between inter-track (uncompacted) zone and track (compacted) zone created by four passages of a wheeled tractor (Landini Globus 70/DBKL Techno). Field studies were carried out on plots of the Vicarello experimental station, Tuscany (43° 27‘ N, 11° 30‘ E). A local average annual precipitation is 678 mm and average annual air temperature is 12.7 °C with absolute extreme values -10 °C and 40 °C. Bulk density, moisture content, water-stable aggregation, and penetration resistance were determined by conventional methods in the 0–0.40 m soil layers. The results showed that the 0.05–0.10 m soil layer, compared to the 0.20–0.25 m and 0.35–0.40 m soil layers, showed a higher degree of compaction by tractor wheels. In this soil layer, significant (at P <0.05 and <0.01) differences between the inter-track and track zone were observed for bulk density (1.18 ±0.10 g.cm−3 and 1.35 ±0.10 g.cm-3) and moisture content (24.9 ±2.3% and 27.9 ±2.3% of volume). Passages of tractor even resulted in an insignificant increase of total amounts (from 66.2 ±4.7% to 68.6 ±2.7%) and mean weight-diameters (from 2.29 ±0.30 mm to 2.40 ±0.04 mm) of water-stable aggregates. There were no significant differences in average penetration resistance of the uppermost 0–0.10 m soil layers between the inter-track (0.77 ±0.26 MPa) and track zone (0.64 ±0.12 MPa). Average soil penetration resistance was significantly (P <0.001) higher in the 0–0.40 m layer of the track zone (1.07 ±0.23 MPa) than in that of the inter-track zone (0.76 ±0.11 MPa).


2018 ◽  
Vol 1 (2) ◽  
pp. 238-243
Author(s):  
Taufik Rizaldi ◽  
Sumono Sumono

Penelitian dilakukan di Desa Lubuk Bayas Kecapamatan Perbaungan Kabupaten Serdang Bedagai pada lahan sawah bertekstur lempung berpasir dengan kadar air 49.17% dan dry bulk density 1.26 g/cm3. Tahanan penetrasi tanah ditentukan melalui pengukuran tahanan penetrasi plat dengan menggunakan penetrometer secara langsung di sawah. Pengukuran dilakukan dengan ukuran plat 5x5 cm2, 5x10 cm2, 5x15 cm2 dan 5x20 cm2. Sudut penekanan 90o, 75o, 60o, 45o, 30o dan kedalaman penekanan 4 cm, 8 cm, 12 cm, 16 cm dan 20 cm. Dari hasil pengukuran diperoleh bahwa semakin besar ukuran plat maka gaya penekanan semakin besar namun tahanan penetrasi tanah semakin kecil. Sedangkan semakin dalam plat masuk ke tanah maka tahanan penetrasi tanah semakin besar. Semakin besar sudut penekanan tahanan penetrasi tanah semakin besar. Untuk ukuran plat, sudut tekan dan kedalaman penekanan plat yang sama pada kedalaman lumpur yang berbeda akan menghasilkan gaya penekanan dan tahanan penetrasi tanah yang berbeda. The study was conducted in Lubuk Bayas Village, Perbaungan Subdistrict, Serdang Bedagai District, in paddy fields with sandy clay texture with a water content of 49.17% and dry bulk density of 1.26 g / cm3. Soil penetration resistance iwas determined by measuring plate penetration resistance using a penetrometer directly in the rice field. Measurements were made with a plate size of 5x5 cm2, 5x10 cm2, 5x15 cm2 and 5x20 cm2. The angle of emphasis was 90o, 75o, 60o, 45o, 30o and the depth of emphasis was 4 cm, 8 cm, 12 cm, 16 cm and 20 cm. Results showed that the larger the plate size found, the greater the compressive force, but the penetration resistance of the soil got smaller. Whereas the deeper the plate entered the ground, the greater the penetration resistance of the soil occurred. The greater the angle of suppression the greater the penetration penetration of the soil. For the plate size, the pressure angle and depth of the same plate compression at different mud depths will result in a different force of suppression and soil penetration resistance.


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2016 ◽  
Vol 36 (3) ◽  
pp. 449-459 ◽  
Author(s):  
Wininton M. da Silva ◽  
Aloísio Bianchini ◽  
Cesar A. da Cunha

ABSTRACT This study aimed to describe the behavior of models for adjusting data of soil penetration resistance for variations in soil moisture and soil bulk density. The study was carried out in Lucas do Rio Verde, MT, Brazil in a typic dystrophic red-yellow Latosol (Oxisol) containing 0.366 kg kg−1 of clay. Soil penetration resistance measurements were conducted in the soil moistures of 0.33 kg kg−1, 0.28 kg kg−1, 0.25 kg kg−1 and 0.22 kg kg−1. Soil penetration resistance behavior due to variations in soil moisture and soil bulk density was assessed by estimating the soil resistance values by non-linear models. There was an increase of the soil penetration resistance values as soil was losing moisture. For the same edaphic condition studied, small differences in the data of soil bulk density affect differently the response of soil resistance as a function of moisture. Both soil bulk density and soil moisture are essential attributes to explain the variations in soil penetration resistance in the field. The good representation of the critical soil bulk density curve as a limiting compression indicator requires the proper choice of the restrictive soil resistance value for each crop.


2013 ◽  
Vol 77 (5) ◽  
pp. 1488-1495 ◽  
Author(s):  
Carlos M. P. Vaz ◽  
Juliana M. Manieri ◽  
Isabella C. de Maria ◽  
Martinus Th. van Genuchten

Bragantia ◽  
2014 ◽  
Vol 73 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Daniel Dias Valadão Junior ◽  
Aloísio Biachini ◽  
Franciele Caroline Assis Valadão ◽  
Rodrigo Pengo Rosa

This study aimed to evaluate the effect of penetration rate and the size of the cone base on the resistance to penetration under different soil moistures and soil bulk density. The experimental design was completely randomized in a 4x2x2x2 factorial arrangement, with the factors, soil bulk density of 1.0; 1.2; 1.4 and 1.6 Mg m-3, soil moisture at the evaluation of 0.16 and 0.22 kg kg-1, penetration rates of 0.166 and 30 mm s-1 and areas of the cone base of 10.98 and 129.28 mm² resulting in 32 treatments with 8 replicates. To ensure greater uniformity and similarity to field conditions, samples passed through cycles of wetting and drying. Only the interaction of the four factors was not significant. Resistance values varied with the density of the soil, regardless of moisture and penetration rate. Soil penetration resistance was influenced by the size of the cone base, with higher values for the smallest base independent of moisture and soil bulk density. The relationship between resistance to penetration and moisture is not always linear, once it is influenced by soil bulk density. Reduction in the area of the cone leads to an increase in the soil resistance to penetration.


Sign in / Sign up

Export Citation Format

Share Document