scholarly journals Antiproliferative, genotoxic and mutagenic potential of synthetic chocolate food flavoring

2022 ◽  
Vol 82 ◽  
Author(s):  
L. S. Frâncica ◽  
E. V. Gonçalves ◽  
A. A. Santos ◽  
Y. S. Vicente ◽  
T. S. Silva ◽  
...  

Abstract Flavoring additives are of great technological importance for the food industry. However, there is little information regarding the toxicological properties of these micro-ingredients, especially at the cellular level. The present study used meristematic root cells of Allium cepa L. to evaluate the toxicity of a liquid, aroma and flavor synthetic chocolate additive, manufactured and widely marketed throughout Brazil and exported to other countries in South America. The flavoring concentrations evaluated were 100.00; 50.00; 25.00; 1.00; 0.50 and 0.25 µL/L, where the highest concentration established was one-hundred times lower than that commercially suggested for use. The concentration 100 µL/L substantially reduced cell division of meristems within 24- and 48-hours exposure. Concentrations from 100.00 to 0.50 µL/L resulted in a significant number of prophases to the detriment of the other phases of cell division, indicating an aneugenic activity, and induced a significant number of cellular changes, with emphasis on micronuclei, nuclear buds and chromosomal breaks. Under the established analysis conditions, with the exception of concentration 0.25 µL/L, the flavoring of chocolate caused cytotoxicity, genotoxicity and mutagenicity to root meristems.

2016 ◽  
Vol 38 (3) ◽  
pp. 297
Author(s):  
Ila Monize Sousa Sales ◽  
Jussara Damascena de Oliveira ◽  
Fabelina Karollyne Silva dos Santos ◽  
Lidiane De Lima Feitoza ◽  
João Marcelo de Castro e Sousa ◽  
...  

 The goal of the present study was to evaluate the cytotoxicity and genotoxicity of artificial synthetic flavoring agents cookie and tutti-frutti. To this end, root meristem cells of Allium cepa L. were exposed to these substances in exposure times of 24 and 48 hour using individual doses of 0.3; 0.6 and 0.9 mL and doses combined as follows: 0.3 mL + 0.3 mL; 0.6 mL and 0.9 mL + 0.6 mL + 0.9 mL. After applying the treatments, root meristems were fixed, hydrolyzed, stained and analyzed a total of 5,000 cells using an optical microscope to evaluate each dose and combined treatment. All three doses of cookie flavoring and combined treatments significantly inhibited cell division of the tissue studied. Doses of tutti-frutti caused no change in cell division rate. In addition, doses of both flavorings and treatments combining these solutions induced cell aberrations in a significant number of cells to the A. cepa system. Therefore, under these analytical conditions, cookie flavoring and combined doses were cytotoxic and genotoxic, and tutti-frutti flavoring, although non-cytotoxic, demonstrated genotoxic action. 


2014 ◽  
Vol 86 (3) ◽  
pp. 1147-1150 ◽  
Author(s):  
LOURRAN P. LACERDA ◽  
GEIZ MALAQUIAS ◽  
ANA PAULA PERON

In this study we evaluated the action of crude aqueous extracts obtained from rhytidome of Hymenaea stigonocarpa (jatobá-do-cerrado) on Allium cepa meristematic root cells in three concentrations: 0.082, 0.164, 0.328g/mL, at exposure times of 24 and 48 h. The slides were prepared by the crushing technique, and cells analyzed throughout the cell cycle, totaling 5000 for each control group and concentration. It was found that all three concentrations, including the lowest which is considered ideal for use, in all exposure times, had significant antiproliferative action on the cell cycle of this test system. For cells under division, we observed a high number of cells in prophase. Therefore, under the conditions studied H. stigonocarpa indicated to be cytotoxic.


CYTOLOGIA ◽  
1982 ◽  
Vol 47 (2) ◽  
pp. 353-358 ◽  
Author(s):  
N. K. Soni ◽  
Premlata Oswal ◽  
S. K. Yadav

2014 ◽  
Vol 86 (3) ◽  
pp. 1131-1137 ◽  
Author(s):  
ERASMOVLANE S.B. NEVES ◽  
PAULO MICHEL PINHEIRO FERREIRA ◽  
LEONARDO H.G.M. LIMA ◽  
ANA PAULA PERON

This study aimed to evaluate the effects of aqueous extracts of dried Phyllanthus niruri L. (stonebreaker) leaves on Allium cepa L. root meristem cells at four concentrations, 0.02 (usual concentration), 0.04, 0.06 and 0.08mg/mL and exposure times of 24 and 48 hours. For each concentration we used a group of five onion bulbs that were first embedded in distilled water and then transferred to their respective concentrations. The radicles were collected and fixed in acetic acid (3:1) for 24 hours. The slides were prepared by the crushing technique and stained with 2% acetic orcein. Cells were analyzed throughout the cell cycle, totaling 5000 for each control and exposure time. The calculated mitotic indices were subjected to the Chi-squared statistical analysis (p<0.05). From the results obtained it was observed that all four concentrations tested had significant antiproliferative effect on the cell cycle of this test system. We also found the presence of cellular aberrations such as colchicined metaphases, anaphasic and telophasic bridges, and micronuclei in the two exposure times for all concentrations evaluated. Therefore, under the conditions studied the concentrations of aqueous extracts of leaves of P. niruri showed to be cytotoxic and genotoxic.


2021 ◽  
Vol 22 (12) ◽  
pp. 6320
Author(s):  
Monia Lenzi ◽  
Veronica Cocchi ◽  
Sofia Gasperini ◽  
Raffaella Arfè ◽  
Matteo Marti ◽  
...  

Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35–100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.


1913 ◽  
Vol 17 (6) ◽  
pp. 636-652 ◽  
Author(s):  
Arthur L. Tatum

In summarizing the findings of this paper it may be said that degenerative changes have been noted in practically every parenchymatous organ. Among these the most striking has been that of serous imbibition by the most active cells of these organs. In regard to the changes in the glands of internal secretion, the findings corroborate the statements of Cushing in regard to hypophysectomy, that removal of one gland of internal secretion results in changes in all the other glands. In this case, degenerative changes predominate in the hypophysis, thymus, ovary, and testis, while hyperplasia is seen in the islands of Langerhans and the medullas of the adrenal glands. Finally, in the rabbit athyroidism is responsible for grave degenerative changes in practically all organs and tissues of the body, and many of the symptoms of cretinism have an anatomical basis in organic cellular changes.


2010 ◽  
Vol 192 (16) ◽  
pp. 4134-4142 ◽  
Author(s):  
Jennifer R. Juarez ◽  
William Margolin

ABSTRACT The Min system regulates the positioning of the cell division site in many bacteria. In Escherichia coli, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a gfp-minD fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.


Sign in / Sign up

Export Citation Format

Share Document