scholarly journals PHOSPHORUS FERTILIZATION AND HARVEST INTERVALS INFLUENCE ENERGETIC AND PHYSICAL PROPERTIES OF BRIQUETTES AND LARGE BRANCHES OF MATE

2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Delmar Santin ◽  
Marcelino Breguez Gonçalves Sobrinho ◽  
Angélica de Cássia Oliveira Carneiro ◽  
Eliziane Luiza Benedetti ◽  
Nairam Félix de Barros

ABSTRACT In mate crop, the commercial part consists of leaves and thin branches, while the large branches (LB) are considered unused residues and left in the field, although they may have potential for use as energy. The objective of this paper was to evaluate the influence of phosphorus fertilization and harvest interval in productivity of mate large branches and in their physical and energetic properties, as well as in derived briquettes. In a seven-year-old plantation, doses of 0, 20, 40, 80, 160 and 320 kg.ha-1 of P2O5 were applied considering harvest intervals of 12, 18 and 24 months. Dry mass, average diameter, P content, and physical and energetic properties of LB were determined. With LB, after its transformation into particles and briquetting, physical and energetic properties were determined, as well as P availability in soil. The phosphorus fertilization increased LB productivity in larger harvest intervals, increasing the amount of energy produced per unit of area, but did not change basic density and gross calorific value of wood. Mate harvest intervals did not affect the apparent density and calorific value of briquettes produced by LB. LB harvested at intervals of 18 and 24 months produced wood with higher basic density and gross calorific value. LB or briquettes have adequate energetic and physical properties, being technically a plant residue with great potential for use as energy.

2018 ◽  
Vol 42 (5) ◽  
Author(s):  
Maria Fernanda Vieira Rocha ◽  
Bárbara Luísa Corradi Pereira ◽  
Aylson Costa Oliveira ◽  
Matheus Felipe Freire Pego ◽  
Taís Regina Lima Abreu Veiga ◽  
...  

ABSTRACT For several wood uses, such as pulp, paper and charcoal, the presence of the bark is undesirable, compromising production. Thus, this study aimed to evaluate the influence of different plant spacings on the properties of the bark of a clone of Eucalyptus grandis x E. camaldulensis at seven years of age at five different plant spacings. The wood discs were removed from the trees at 0, 25, 50, 75 and 100% of the commercial height; then we performed thickness, basic density, gross calorific value and mineral content analysis of bark. There were no significant differences among treatments for the bark gross calorific value and thickness. For the bark basic density, the highest values were found in trees planted in wider plant spacings and considering the mineral content, there was a significant difference only for P, Mn and Zn.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5083-5096
Author(s):  
Cosmin Spirchez ◽  
Veronica Japalela ◽  
Aurel Lunguleasa ◽  
Daniel Buduroi

Sawdust specimens of two Paulownia species, namely Paulownia tomentosa and Paulownia elongata, were evaluated in order to obtain briquettes and pellets. Briquettes and pellets were manufactured from the sawdust, and their physical properties (density), mechanical properties (the resistance of the briquettes to breaking, and the shear resistance of the pellets), and energetic properties (caloric value, black ash content, and calcined ash content) were determined. The densities of the P. elongata and P. tomentosa briquettes were 790 kg/m3 and 934 kg/m3, respectively, while the pellets had densities of 1268 kg/m3 and 1266 kg/m3, respectively. These values were within the standardized limits, and the ash content had good values. The high calorific value of 16815 kJ/kg and the low calorific value of 16669 kJ/kg was acceptable, since they were greater than other vegetable resources. In conclusion, it was found that the two types of wood biomass are suitable for the production of briquettes and pellets, due to their good physical, mechanical, and energetic properties.


2016 ◽  
Vol 40 (4) ◽  
pp. 749-758 ◽  
Author(s):  
Elder Eloy ◽  
Dimas Agostinho da Silva ◽  
Denise Schmidt ◽  
Rômulo Trevisan ◽  
Braulio Otomar Caron ◽  
...  

ABSTRACT This study aimed to determine the effect of planting age and spacing on energy properties of different compartments of the biomass of Eucalyptus grandis W. Hill ex Maiden, disseminated in different spacings: 2.0 x 1.0 m, 2.0 x 1.5 m, 3.0 x 1.0 m e 3.0 x 1.5 m, in the 1st, 3rd and 5th year after the planting. The present study was carried out as an experiment installed in an experimental design of randomized complete blocks in three replications. Variables determined were Biomass (BIO), Gross Calorific Value (GCV), Basic Density (BD), Energy Productivity (EP), Energy Density (ED), Fixed Carbon Content (FCC), Volatile Material Content (VMC), and Ash Content (AC). Ages have an effect on all studied variables, and in the 5th year after planting, the largest BIO, EP, BD, ED and FCC values are checked. The planting spacings induce different productions of BIO and EP, with a trend towards lower values with increasing planting spacing in all assessed periods. The compartments of trees influence BIO, GCV, FCC, VMC and AC variables. Regarding to energy, the higher the age and lower the planting spacing, the better the energy properties of biomass.


2019 ◽  
Vol 122 ◽  
pp. 01007
Author(s):  
Cosmin Spirchez ◽  
Aurel Lunguleasa ◽  
Cātālin Croitoru

The paper makes a comparison between four types of briquettes: first was wheat and rapeseed briquettes, second was wheat briquettes (batch 2018), third was wheat briquettes (batch 2017), and fourth was lucernes briquettes, from the point of view of the physical and energetic characteristics, in order to choose the best ones and their corresponding market. The main properties studied are the density and moisture of the briquettes, physical properties, and also calorific power and ash content as energetic properties. Research results show that wheat and rape briquettes have had high calorific value but low density, compared to other types of briquettes. A general conclusion rise from whole paper, respectively the vegetable biomass is a renewable material and briquettes from it remains the best option of combustible materials.


Author(s):  
Kerich K. Daniel ◽  
Zachary O. Siagi ◽  
Julius O. Ogola

Aims: This study investigated the use of agro-wastes for the production of briquettes. It was carried out to investigate the effect of formulation, binder and compaction pressure of rice husk-Bagasse briquettes on thermal and physical properties. Study Design: The experimental design for this study was 6x5x2 Randomized Complete Block Design Place and Duration of the Study: Rice husks and bagasse were collected from Lake Basin Development Authority’s rice mill and Kibos sugar and Allied company respectively. The binders were sourced locally in Kisumu. The study was conducted between March 2019 and February 2020. The fabrication and laboratory analysis were carried out in the engineering and laboratory departments of Kenya Industrial Research and Development institute, Kisumu. Methodology: The experimental design for this study was 6x5x2 Randomized Complete Block Design. This study involved six formulations ratios (0:100, 20:80, 40:60, 60:40, 80:20, 100:0), five compaction pressure levels (108kPa, 180kPa, 253kPa, 325kPa, 397kPa) and two binders (clay, cassava) They were arranged in Randomize Complete Block Design with three replications per experiment. Results: The briquettes bulk density was in the range of 849 to 1001 kg.m−3, while the calorific value ranged from 5.541 kcal/g for 100% Rice husk clay binder to 7.345 kcal/g 20% Rice Husk cassava binder. Briquettes with blend ratio of 40-60% Rice Husk took longer time to burn. Briquette formulations with clay binder had burning rates ranging from 0.28 g/min to 0.15 g/min while with cassava binder from 0.52 g/min to 0.37 g/min. The ignition time of the briquettes ranged from 62 sec to 95 sec with cassava binder and 110 sec to 191sec with clay binder. The shatter index ranged from 0.94 to 0.99 with cassava and 0.9 to 0.98 with clay binder. Conclusion: Higher compaction pressures and use of cassava binder produced stronger briquettes with higher calorific values. Briquettes with higher percentage of bagasse had low ignition time and low bulk densities. The bulk densities and ignition time showed significant rise with increase in the compaction pressure but inversely affected the burning rate. The binder used significantly affected both the thermal and physical properties of all the formulations.


Sign in / Sign up

Export Citation Format

Share Document