scholarly journals Hysteresis and thermodynamic properties of water sorption in ‘Malagueta’ pepper seeds

Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Isneider L. Silva

ABSTRACT The objective of this study was to determine hysteresis, enthalpy, entropy, enthalpy-entropy compensation theory and Gibbs free energy for water adsorption and desorption in ‘Malagueta’ pepper seeds. Hygroscopic equilibrium moisture contents were determined by the static gravimetric method, with water activity in the range from 0.29 to 0.90 and temperatures of 30, 40 and 50 °C. The hysteresis of the ‘Malagueta’ pepper seeds reduces with the increase of temperature. Enthalpy, entropy and Gibbs free energy of adsorption and desorption increase with the reduction of the moisture content of the seeds. The enthalpy-entropy compensation theory is valid for the sorption processes. The sorption of water between seeds and the surrounding air is a non-spontaneous process.

2020 ◽  
pp. 1810-1816
Author(s):  
Samuel Gonçalves Ferreira dos Santos ◽  
Jefferson Kran Sarti ◽  
Cassio da Silva Kran ◽  
Hellismar Wakson da Silva ◽  
Renato Souza Rodovalho ◽  
...  

Solanum gilo is a plant belonging to the family Solanaceae with a probable origin in Africa. It was introduced to Brazil by workers. The fruit is cultivated by small producers in Brazil and it is a source of food for the low-income population. Its seeds are harvested with high moisture contents, and the drying process is necessary. Sorption isotherms consist of the relation between water activity (aw) and moisture content of an agricultural product at a constant temperature. This information contributes to the drying process, thus favoring an increased longevity of agricultural products, such as seeds. This research aims to determine the desorption isotherms of Solanum gilo seeds and calculate their thermodynamic properties (enthalpy, entropy and Gibbs free energy). Sorption experiments were performed by the gravimetric static method using saline solutions. Several mathematical models were fitted to the experimental data, and the selection of the best model was performed by statistical criteria. Equilibrium moisture contents were obtained at 10, 20 and 30°C and at water activities between 0.111 and 0.985 (decimal). The modified Oswin model best represents moisture desorption isotherms of Solanum gilo seeds under the studied conditions. The energy required for the process was 0.22-555.68 kJ kg-1. The latent heat of vaporization (L), the enthalpy (Qst), the entropy (ΔS) and the Gibbs free energy (ΔG) increased with the reduction of the equilibrium moisture content of seeds. The theory of isokinetics is valid for the desorption process.


Author(s):  
Karen C. Rodrigues ◽  
Hellismar W. da Silva ◽  
Isneider L. Silva ◽  
Samuel G. F. dos Santos ◽  
Daniel P. da Silva ◽  
...  

ABSTRACT Studies related to water sorption in seeds are essential for the design and optimization of storage systems. The objective of this research was to determine and model the adsorption isotherms and calculate the latent heat of water vaporization, differential enthalpy and entropy, the isokinetic theory and Gibbs free energy for ‘Cumari-do-Pará’ pepper seeds. The equilibrium moisture contents were obtained by the static gravimetric method at temperatures of 30, 35 and 40 °C and water activities between 0.290 and 0.900 (decimal). The Chen-Clayton model is the one that best represents the water adsorption isotherms in ‘Cumari-do-Pará’ pepper seeds under the studied conditions, with 9.94% mean relative error, 0.40 mean estimated error and random distribution of residuals. The latent heat of vaporization ranged from 2,555.669 to 3,162.180 kJ kg-1. The enthalpy, entropy and Gibbs free energy increase with the reduction in the equilibrium moisture content of the seeds. The isokinetic theory is valid for the adsorption process.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xidong Du ◽  
Tengfei Wu ◽  
Fulong Sun ◽  
Zhenkun Hou ◽  
Zhenjian Liu ◽  
...  

Adsorption isotherms of CH4 and CO2 on Qinshui Basin anthracite were obtained at the temperatures of 283 K, 303 K, and 323 K using the gravimetric method. The feasibility of the displacement of CH4 by injecting CO2 on this anthracite was verified by calculating the selectivity factor of CO2 over CH4 (αCO2/CH4), adsorption affinities, and thermodynamic properties of CH4 and CO2. Results show that the values of αCO2/CH4 are more than 4.0. Henry’s constant (KH) of CH4 is smaller than that of CO2, and CH4 has a weaker affinity with coal surface. As temperature improves, KH of CO2 and CH4 decrease. Gibbs free energy change (ΔG) and surface potential (Ω) of CO2 are more negative than those of CH4, indicating that CO2 adsorption on anthracite is more spontaneous and favorable. The absolute values of Ω and ΔG of CH4 and CO2 increase with pressure rises. Isosteric heat of adsorption (Qst) of CH4 is lower than that of CO2. With increasing loading, Qst and entropy loss (ΔS) of CH4 decrease, while Qst and ΔS of CO2 increase. The higher ΔS of CO2 reveals that the adsorbed CO2 molecules constitute a more stable rearrangement than CH4 molecules. High temperature reduces ΔS of CH4 and CO2.


NANO ◽  
2016 ◽  
Vol 11 (09) ◽  
pp. 1650100 ◽  
Author(s):  
Zhi-Qiang Wang ◽  
Yong-Qiang Xue ◽  
Zi-Xiang Cui ◽  
Hui-Juan Duan ◽  
Xiao-Yan Xia

Dissolution of nanoparticles is involved in the preparation, research and application of nanomaterials, but there is a surprising difference in dissolution thermodynamics between nanoparticles and the corresponding bulk materials. In the paper, the relations of dissolution thermodynamic properties, equilibrium constant of nanoparticles, respectively, and particle size were derived by introducing interface variables and the surface chemical potential. Experimentally, the solubility of nano-barium sulfate with different average particle sizes at different temperatures were determined by the method of electrical conductivity, obtaining the influencing regularities of particle size on the dissolution thermodynamic properties and the equilibrium constant. The regularities are in accordance with the theory. The results show that there are remarkable effects of particle size of nanoparticles on the dissolution thermodynamic properties and the equilibrium constant; with the decreasing of the size of nanoparticles, the dissolution equilibrium constant increases, while the standard dissolution Gibbs free energy, the standard dissolution enthalpy and the standard dissolution entropy decrease; and the logarithm of the dissolution equilibrium constant, the standard dissolution Gibbs free energy, the standard dissolution enthalpy and the standard dissolution entropy are linearly associated with the reciprocal of particle size, respectively. This new theory provides a quantitative description of nanoparticles dissolution behavior, and has important scientific significance for understanding and predicting of thermodynamic regularity of dissolution concerned in the preparation, researches and applications of nanomaterials.


2011 ◽  
Vol 56 (1) ◽  
pp. 13-23 ◽  
Author(s):  
W. Gąsior ◽  
P. Fima ◽  
Z. Moser

Modeling of the Thermodynamic Properties of Liquid Fe-Ni and Fe-Co Alloys From the Surface Tension DataRecently proposed method of modeling of thermodynamic properties of liquid binary alloys from their surface tension data is described. The method utilizes Melford and Hoar equation, relating surface tension with excess Gibbs free energy, combined with new description of the monatomic surface layer and β parameter. The method is tested on Fe-Ni and Fe-Co alloys and the obtained results show very good agreement with experimental thermodynamic data of other authors. The model allows also to calculate the surface tension from thermodynamic data, and it gives better agreement with experimental results than those modeled with the use of Butler equation and traditionally defined monatomic surface layer and β = 0.83.


Sign in / Sign up

Export Citation Format

Share Document