scholarly journals Physiological indices and growth of ‘Gigante Amarelo’ passion fruit under salt stress and silicate fertilization

Author(s):  
Genilson L. Diniz ◽  
Reginaldo G. Nobre ◽  
Geovani S. de Lima ◽  
Leandro de P. Souza ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT Abiotic stresses are responsible for the loss of agricultural production in different regions, especially in semiarid regions, which have long periods of drought and high evapotranspiration, leading to the use of saline water as an alternative for the expansion of irrigated areas. In this context, the objective was to evaluate the physiological indices and the growth of the ‘Gigante Amarelo’ passion fruit as a function of the salinity of irrigation water and fertilization with silicon. A randomized block design was used in a 5 x 2 factorial scheme, whose treatments consisted of five electrical conductivities of irrigation water - ECw (0.3; 1.0; 1.7, 2.4 and 3.1 dS m-1) associated with two doses of silicion (150 and 300 g of silicon plant-1) with four repetitions. Salt stress causes changes in gas exchange, chlorophyll a and b synthesis and growth of ‘Gigante Amarelo’ passion fruit plants, 60 days after transplanting. Fertilization with silicon dose of 300 g plant-1 promotes increments in CO2 assimilation rate and instantaneous water use efficiency, being able to mitigate the deleterious effects of salinity. Passion fruit plants fertilized with silicon dose of 300 g plant-1 attained greater growth in stem diameter and relative growth rate in stem diameter, from 30 to 60 days after transplanting.

2020 ◽  
Vol 33 (1) ◽  
pp. 184-194
Author(s):  
GEOVANI SOARES DE LIMA ◽  
COSMO GUSTAVO JACOME FERNANDES ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
HANS RAJ GHEYI ◽  
PEDRO DANTAS FERNANDES

ABSTRACT The objective of this study was to evaluate the gas exchange, chloroplast pigments and growth of ‘BRS Rubi do Cerrado’ passion fruit as a function of irrigation with saline water and potassium fertilization in the seedling formation stage. The experiment was conducted under greenhouse conditions in the municipality of Pombal-PB, Brazil. A randomized block design was used in 5 x 2 factorial scheme, corresponding to five levels of water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7 and 3.5 dS m-1) and two doses of potassium - KD (50 and 100% of the recommendation), with four replicates and two plants per plot. Water salinity from 0.3 dS m-1 reduced the stomatal opening, transpiration, CO2 assimilation and inhibited the growth of ‘BRS Rubi do Cerrado’ passion fruit plants, at 40 days after sowing. There was no CO2 restriction in the substomatal cavity of passion fruit plants grown under water salinity from 0.3 dS m-1. Potassium dose of 150 mg kg-1 of soil, corresponding to 100%, intensified the effect of salt stress on the assimilation rate and instantaneous carboxylation efficiency in 'BRS Rubi do Cerrado' passion fruit. There was interaction between water salinity levels and potassium doses for the chlorophyll a and b contents of 'BRS Rubi do Cerrado' passion fruit.


Author(s):  
André A. R. da Silva ◽  
Luana L. de S. A. Veloso ◽  
Geovani S. de Lima ◽  
Carlos A. V. de Azevedo ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The objective of the present study was to evaluate the effect of exogenous application of hydrogen peroxide on the emergence, growth and gas exchange of yellow passion fruit seedlings subjected to salt stress. The experiment was conducted in pots (Citropote®) under greenhouse conditions, in the municipality of Campina Grande, PB, Brazil. Treatments were distributed in a randomized block design, in a 4 x 4 factorial arrangement, with four levels of electrical conductivity of irrigation water (0.7, 1.4, 2.1 and 2.8 dS m-1) associated with four concentrations of hydrogen peroxide (0, 25, 50 and 75 μM), with four replicates and two plants per plot. Irrigation using water with electrical conductivity above 0.7 dS m-1 negatively affects the emergence and growth of passion fruit. Hydrogen peroxide concentrations between 10 and 30 μM induce the acclimation of passion fruit plants to salt stress, mitigating the deleterious effects of salinity on the relative growth rate in stem diameter and leaf area, stomatal conductance, transpiration, CO2 assimilation rate and instantaneous carboxylation efficiency. Irrigation water salinity combined with hydrogen peroxide concentrations above 30 μM causes reduction in passion fruit growth and physiology.


2021 ◽  
Vol 34 (1) ◽  
pp. 199-207
Author(s):  
GENILSON LIMA DINIZ ◽  
REGINALDO GOMES NOBRE ◽  
GEOVANI SOARES DE LIMA ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
HANS RAJ GHEYI

ABSTRACT The Brazilian Northeast region suffers from some abiotic stresses that are responsible for the loss of agricultural production, such as long drought periods and high evapotranspiration, associated with the quality of the water, which induces the use of saline water as an alternative for the expansion of irrigated areas, and silicate fertilization contributes to reduce the effects of salinity under the Northeastern semi -arid conditions. The objective of this study was to evaluate the osmotic potential and physiological indices of yellow passion fruit seedlings under irrigation water salinity and silicate fertilization. The experiment was carried out under greenhouse conditions at the Federal University of Campina Grande, Pombal -PB, Brazil, in a randomized block design in a 5 x 5 factorial scheme, relative to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.0; 1.7; 2.4 and 3.1 dS m-1) and five doses of silicate fertilization (0; 25; 50; 75 and 100 g silicon per plant) in four replicates and two plants per plot. The application of 50, 75 and 100 g silicon per plant reduced the osmotic potential in the leaf tissues of ‘Gigante Amarelo’ passion fruit plants. Water salinity lower than 1.3 dS m-1 resulted in an increase in chlorophyll b content; increase in carotenoid content was observed in plants subjected to silicon doses of 25 and 100 g per plant. Salinity levels above 1.1 dS m-1 compromised the performance of photosystem II of passion fruit plants when subjected to silicon doses.


Author(s):  
Marlene A. F. Bezerra ◽  
Lourival F. Cavalcante ◽  
Francisco T. C. Bezerra ◽  
Walter E. Pereira ◽  
Flaviano F. de Oliveira ◽  
...  

ABSTRACT Nutritional status is an important tool in salinity management, because salt stress interferes with both the absorption and the assimilation of mineral nutrients by plants. The objectives of this experiment were to evaluate the effects of water salinity, lateral protection of pits against water losses and calcium doses on the leaf concentration of macronutrients and sodium of yellow passion fruit cv. BRS GA1. The treatments were arranged in a randomized block design in split plots in a 2 × (2 × 5) factorial scheme, corresponding to water salinity (0.3 and 4.0 dS m-1) in the main plot, and the combinations between lateral protection of pits (without and with) and calcium doses (0, 30, 60, 90 and 120 kg ha-1) in the subplots. Leaf concentrations of macronutrients and sodium were determined at the phenological stage of full flowering. Irrigation of yellow passion fruit with 4.0 dS m-1 water decreased the leaf concentrations of macronutrients. The lining of the pits compromised macronutrient concentration in the plants. Calcium fertilization is recommended for yellow passion fruit cultivated in Entisol with low calcium concentration at the dose of 60 kg ha-1, because it raises nitrogen and calcium concentrations in plants irrigated with non-saline water and magnesium and sulfur concentrations in those irrigated with saline water. Calcium attenuates salt stress because it promotes the accumulation of macronutrients in yellow passion fruit under saline conditions.


2019 ◽  
Vol 49 ◽  
Author(s):  
André Alisson Rodrigues da Silva ◽  
Geovani Soares de Lima ◽  
Carlos Alberto Vieira de Azevedo ◽  
Hans Raj Gheyi ◽  
Leandro de Pádua Souza ◽  
...  

ABSTRACT The semi-arid region of the Brazilian Northeast has adequate edaphoclimatic conditions for the passion fruit production, but the water used for irrigation commonly has high concentrations of salts that are harmful to the plant growth and development. A previous supply of hydrogen peroxide induces the acclimation of plants under saline stress conditions, reducing deleterious effects on their growth and physiology. This study aimed to evaluate the gas exchanges and growth of passion fruit as a function of irrigation with saline water and exogenous application of hydrogen peroxide. The experiment was carried out under greenhouse conditions, using a randomized block design, in a 4 x 4 factorial arrangement, being four levels of irrigation water electrical conductivity (0.7 dS m-1, 1.4 dS m-1, 2.1 dS m-1 and 2.8 dS m-1) and four hydrogen peroxide concentrations (0 µM, 25 µM, 50 µM and 75 µM), with four replicates and two plants per plot. The hydrogen peroxide application attenuated the deleterious effects of the irrigation water salinity on transpiration, CO2 assimilation rate, internal carbon concentration, plant height and leaf area of yellow passion fruit, at 60 days after sowing, with the concentration of 25 µM being the most efficient. Irrigation using water with electrical conductivity above 0.7 dS m-1 negatively affects the gas exchanges and growth of passion fruit, being the stomatal conductance and leaf area the most sensitive variables to the salt stress.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 3039-3052
Author(s):  
Geovani Soares de Lima ◽  
◽  
Charles Macedo Félix ◽  
Saulo Soares da Silva ◽  
Lauriane Almeida dos Anjos Soares ◽  
...  

In the semi-arid region of Northeastern Brazil, due to the occurrence of excess salts, both in the water and soil, plants are constantly exposed to various conditions of abiotic stress. Thus, it is extremely important to identify methods capable of minimizing the effects of salt stress on plants as a way to ensure the expansion of irrigated areas. In this context, the objective of this study was to evaluate the gas exchange, growth, and production of mini-watermelon irrigated with saline waters and fertilized with phosphorus. The experiment was conducted in pots under greenhouse conditions in Pombal, PB, Brazil, using a randomized block design in a 5 x 4 factorial scheme, corresponding to five levels of electrical conductivity of irrigation water—ECw (0.3, 1.3, 2.3, 3.3, and 4.3 dS m-1), four phosphorus doses— PD (60, 80, 100, and 120% of the recommendation), and with three replicates. Watermelon plants cv. Sugar Baby were sensitive to water salinity greater than 0.3 dS m-1, with more pronounced inhibition of gas exchange, growth, and production. Reduction in the CO2 assimilation rate of watermelon plants cv. Sugar Baby was associated with factors of stomatal and non-stomatal origin. Phosphorous doses corresponding to 73 and 88% of the recommended values promoted an increase in the intercellular CO2 concentration and stem diameter of mini-watermelon plants. P2O5 doses ranging from 60 to 120% of the recommendation did not mitigate the effects of salt stress on the cultivation of watermelon cv. Sugar Baby.


2020 ◽  
Vol 33 (2) ◽  
pp. 509-517
Author(s):  
TARSO MORENO ALVES DE SOUZA ◽  
VANDER MENDONÇA ◽  
FRANCISCO VANIES DA SILVA SÁ ◽  
MEDSON JANER DA SILVA ◽  
CAÍQUE SANTOS TOMÉ DOURADO

ABSTRACT Salt stress causes losses in the yields of crops, especially those of great economic and social-food importance, such as passion fruit. The objective of this study was to evaluate the effects of fertilization with calcium silicate on the mitigation of salt stress in yellow passion fruit seedlings. The experiment was conducted in a protected environment, in a randomized block design, arranged in a 4 x 3 factorial scheme, referring to four concentrations of calcium silicate (0; 2.22; 4.44 and 6.66 g per plant) and three levels of irrigation water salinity - ECw (0.5; 1.7 and 4.0 dS m-1), with four replicates, considering five plants as experimental unit. BRS GA1 seedlings were produced in 0.5-dm3 containers filled with a mixture of soil, washed sand and aged bovine manure, in a ratio of 1:1:1 (v:v:v). Plants received calcium silicate applications according to the studied doses in three plots, at 30, 45 and 60 days after sowing. At 90 days after sowing, plants were evaluated for growth and biomass accumulation. The use of water with salinity of 4.0 dS m-1 restricted the growth and biomass accumulation of passion fruit seedlings. The use of calcium silicate at dose of 3.5 g per plant mitigates salt stress in seedlings of passion fruit cultivar BRS GA1 when irrigated with saline water.


2018 ◽  
Vol 31 (4) ◽  
pp. 808-816
Author(s):  
Idelfonso Leandro Bezerra ◽  
Reginaldo Gomes Nobre ◽  
Hans Raj Gheyi ◽  
Geovani Soares De Lima ◽  
Joicy Lima Barbosa

ABSTRACT The cultivation of irrigated guava in semi-arid areas highlights the need for information regarding its responses to irrigation water quality and the fertilization management that enables its exploitation. Thus, this study aimed to evaluate the effect of water salinity and nitrogen (N) doses on the growth and physiology of the guava cv. ‘Paluma’. The experiments was conducted in drainage lysimeters under field conditions in an experimental area at the Center of Sciences and Agri-Food Technology of the Federal University of Campina Grande (CCTA/UFCG), Campus II, in Pombal, PB, Brazil. The experiment had a randomized block design, and treatments consisted of a 5 x 4 factorial arrangement corresponding to five levels of irrigation water electrical conductivity, ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1), and four N doses (70, 100, 130, and 160% of the recommended N dose). The 100% dose corresponded to 541.1 mg of N dm-3 of soil. Increments in irrigation water salinity from 0.3 dS m-1 led to a reduction in stomatal conductance, internal CO2 concentration, CO2 assimilation rate, transpiration, instantaneous water use efficiency, the number of leaves and branches, stem diameter, and absolute and relative growth rates. Nitrogen doses ranging from 378.7 to 865.7 mg of N dm-3 of soil did not affect gas exchange and plant growth. Although ‘Paluma’ guava growth was affected by increases in water salinity, these plants can be irrigated using water of up to 1.42 dS m-1 with an acceptable reduction of 10% in growth variables. The interaction between irrigation water salinity and N fertilization had no significant effect on any of the variables studied.


2018 ◽  
Vol 10 (10) ◽  
pp. 151 ◽  
Author(s):  
Adriana da S. Santos ◽  
Railene H. C. R. Araújo ◽  
Reginaldo G. Nobre ◽  
Valéria F. de O. Sousa ◽  
Marília H. B. S. Rodrigues ◽  
...  

Hydrogen peroxide (H2O2) is a molecule that can flag plants under biotic and abiotic stress conditions. Among the kinds of stress, the salinity stress is the one that most usually affects plants. Consequently, the purpose hereof was to use hydrogen peroxide (H2O2) to mitigate the possible harmful effects of salinity in yellow passion fruit seedlings. We employed a randomized block design, in a 5 × 3 factorial scheme, corresponding to five irrigation water electric conductivity levels (0.3; 1.3; 2.3; 3.3; and 4.3 dS m-1) and three hydrogen peroxide concentrations (0; 5; and 15 μmol L-1), with four repetitions. The treatments were applied foliarly 7 and 15 days after the seedlings’ germination with hand sprayers. Sixty days after sowing, we evaluated the seedlings’ growth and quality variables, which finally proved that hydrogen peroxide mitigates the harmful effect of the irrigation water’s salinity up to 2 dS m-1 in the growth of yellow passion fruit seedlings at the concentration of 5 μmol/L. Nonetheless, excessive concentrations (15 μmol L-1) associated with high salt concentrations were proven detrimental to the seedlings’ phenological growth and quality.


Author(s):  
M. V. Dlamini ◽  
M. T. Masarirambi

Saline irrigation water is becoming an important water source as fresh water is fast becoming a scarce resource in many areas of the world, including Eswatini, especially in arid and semi-arid regions.  A study to test the response of two varieties of spinach (fordhook giant and mustard) to salinity was conducted in a field pot experiment at the Faculty of Agriculture at the Luyengo Campus of the University of Eswatini.  The treatments were laid in a randomized block design (RCBD).  The experiment consisted of four treatments, each replicated twelve times.  Treatments were salinity levels of 0.0 dS/m, 1.5 dS/m, 2.0 dS/m and 3.5 dS/m.  All the treatments were subjected to similar agronomic practices. Spinach was grown and observed for a period of five weeks.  Plant height was measured and the number of leaves counted weekly throughout the experiment. Significant differences (P < 0.05) between salinity treatments were obtained for plant height beginning in week 2 but were more pronounced in week 3, 4 and week 5.  No significant differences were obtained for the number of leaves.  There were however, clear significant differences between spinach irrigated with none saline irrigation water compared to saline irrigation water.   It was concluded that irrigating spinach with saline water of more than 2.0 dS/m drastically reduce plant growth but not the number of leaves under the conditions of the experiment.


Sign in / Sign up

Export Citation Format

Share Document