scholarly journals Fiber-reinforced concrete for the flat bottom of silos

Author(s):  
Rodrigo A. Constantino ◽  
José P. Lopes Neto ◽  
Marcilene V. da Nóbrega ◽  
José W. B. do Nascimento ◽  
Jefferson H. G. da Silva

ABSTRACT The use of synthetic fibers as reinforcement for concrete replacing the steel reinforcement has been diffused worldwide in several applications, gaining prominence in the application for industrial floors, tunnel linings, road pavements, etc., i.e., continuous structures in contact with soil that require performance in the elastic medium. The present study investigated the applicability of concrete reinforced with synthetic fibers in the bottom slab of silos supported directly on the ground, being composed of an experimental study and a case study. The experimental study consisted of the analysis of the mechanical behavior of this concrete by testing three concentrations of synthetic fibers (3.0, 4.5 and 6.0 kg m-3) in a conventional simple concrete matrix. The case study consisted of the design of this part in conventional reinforced concrete and concrete reinforced with synthetic fibers with the objective of performing an economic comparison between the two projects. The experimental results showed that the fiber concentration that contributed to a better mechanical performance of the concrete matrix was 3.0 kg m-3. The case study showed that the most economical design was the one made with fiber-reinforced concrete.

2013 ◽  
Vol 327 ◽  
pp. 201-204
Author(s):  
Jin Song Shi ◽  
Bo Yuan ◽  
Da Zhang Wang ◽  
Zhe An Lu

In order to investigate the difference of current toughness index standards for fiber reinforced concrete, two main groups of specimens were made to take bending toughness test with the requirements of corresponded standards, loading methods and loading speeds, which are ASTM C1018 in America, ACI 544 and JSCE G552 in Japan. United with software Origin, the load-deflection curves gathered from bending test was calculated with relative standards. The results show that the calculated toughness index value with ASTM C1018-98 in America is more accurate with three grades but the requested deflection of testing is much longer than others while ACI 544 and JSCE G552 in Japan are quite the contrary.


2021 ◽  
Vol 1046 ◽  
pp. 1-7
Author(s):  
Manjunath V. Bhogone ◽  
Kolluru V.L. Subramaniam

The fracture response of macro polypropylene fiber reinforced concrete (PPFRC) and hybrid blend of macro and micro polypropylene fiber reinforced concrete (HyFRC) are evaluated at 1, 3, 7 and 28 days. There is an improvement in the early-age fracture response of HyFRC compared to PPFRC. The changing cohesive stress-crack separation relationship produced by ageing of the concrete matrix is determined from the fracture test responses. An improved early-age cohesive stress response is obtained from the hybrid blend containing micro and macro fibers. The hybrid fiber blend also has a higher tensile strength at early age when compared to an identical volume fraction of macro polypropylene fibers.


Author(s):  
Michael Dopko ◽  
Meysam Najimi ◽  
Behrouz Shafei ◽  
Xuhao Wang ◽  
Peter Taylor ◽  
...  

Fiber-reinforced concrete (FRC) is a promising construction material mainly because of the crack-controlling mechanisms that discrete fibers can impart to inherently brittle concrete. Macrofibers, in particular, have been proven effective for providing post-crack ductility and toughness, while synthetic fibers are a promising solution to avoid corrosion-related durability issues. To assess the performance enhancement provided by macro-synthetic concrete fibers, this study performs flexural tests on FRC beams containing three different types of macro-synthetic fibers. The selected fibers include polypropylene (PP), polyvinyl alcohol (PVA), and alkali-resistant glass (ARG) macrofibers mixed at volume fractions of 0.5%, 1.0%, and 1.5%. Static and dynamic fresh properties are monitored using the vibrating Kelly ball (VKelly) test. Beam specimens are then placed under a third point bending configuration, as per ASTM C1609 Standard, to measure load versus mid-span deflection. Strength and toughness parameters are derived from the load–deflection data to assess the flexural performance of the FRC composite systems under consideration. The parameters of interest include first peak strength (pre-crack flexural strength) and post-crack residual strength and toughness provided by fiber addition. Of the mixtures tested, ARG fiber mixtures show the highest residual strength and toughness values, followed by PP and PVA fiber mixtures. ARG fibers produce the most workable mixtures at all fiber volumes, while PVA fibers show a tendency to encounter dispersion issues at higher volume doses. The outcome of this study is expected to facilitate the selection of fibers by giving insight into their relative contribution to fresh and hardened flexural properties of FRC.


2019 ◽  
Vol 46 (12) ◽  
pp. 1081-1089 ◽  
Author(s):  
Hossein Karimzadeh ◽  
Ali Razmi ◽  
Reza Imaninasab ◽  
Afshin Esminejad

This paper evaluated mixed mode I/II fracture toughness of fiber-reinforced concrete using cracked semi-circular bend (SCB) specimens subjected to three-point bending test. Additionally, a comparison was made between the experimental results and the estimations made by different theoretical criteria. Natural and synthetic fibers at various concentrations were used in this study. After producing cracks in SCB specimens at different inclination angles to induce different mixed mode loading conditions (from pure mode I to II), the fracture toughness of SCB specimens was determined. Furthermore, the compressive, splitting tensile, and flexural strength of natural and synthetic fiber-reinforced concrete were measured after 7 and 28 days of curing. While there is an increase in the aforementioned strengths with fiber content increase, 0.3% was found to be the optimum percentage regarding fracture toughness for both fibers. Also, the comparison between the experimental and theoretical results showed that generalized maximum tangential stress criterion estimated the experimental data satisfactorily.


Sign in / Sign up

Export Citation Format

Share Document