scholarly journals Blood pressure and lipid profile in young women: the role of anthropometric measurement

2014 ◽  
Vol 28 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Marcelo Custódio Rubira ◽  
Ana Paula Fernandes de Angelis Rubira ◽  
Lucas De Angelis Rubira ◽  
Milton Carlos Martins Lima ◽  
Roberto Jorge da Silva Franco ◽  
...  

Body composition has fundamental importance in the quality of life and is a powerful predictor of mortality and morbidity in humans. The identification and monitoring of the amount of body fat have been receiving special attention in aspects related to health promotion, not just for its actions in the prevention and in the control of cardiovascular diseases but also for their induction and association with risk factors, especially in the plasmatic lipid levels and arterial pressure. It was investigated the relationship between body mass index (BMI) and body fat percentage (%BF) by bioelectrical impedance analysis (BIA) with the blood pressure levels (systolic and diastolic) and serum lipids (TC, HDL-c, LDL-c, VLDL-c, TG). In a group of fifty seven women (aged 18 to 26 years old ), obesity was detected in 5 and 19 women by BMI (≥ 30 kg/m2) and %BF (≥ 30%), respectively. BMI and % BF were positively correlated with blood pressure (systolic and diastolic), and highly significant in the obese group by %BF. Moreover, BMI and % BF were significantly correlated with all lipids and lipoprotein fractions VLDL-c and triglyceride, respectively. These results suggest that %BF is a good indicator of “occult obesity” in subjects with normal body mass index. The associated use of BMI and %BF to better evaluate obesity may improve the study of blood pressure levels and serum lipid changes that are commonly associated with obesity.

2021 ◽  
Author(s):  
Diana Vrabie ◽  
George-Sebastian Iacob

Bioelectrical impedance analysis (BIA) also called bioelectrical impedance (BEI) is a non-invasive method based on the electric conductibility properties of tissues and is a commonly used technique for estimating body composition.Percentage of body fat is strongly associated with the risk of several chronic diseases but its accurate measurement is difficult. Body Mass Index is a useful population-level measure of overweight and obesity. It is used for all categories of people, male or female.The main objective of this study was to determine if there is a relationship between BMI and body fat percentage (BF%) in a group of Romanian female students. This relationship has been studiedin various ethnic groups before. To conduct the study, we examined 29 young females (aged 20-36 years old) estimating BF% from bioelectrical impedance analysis using Tanita Body Fat Monitor Scale UM-076.In this research group, the BMI and BodyFat dependent variables have a moderate to strong correlation (r = .839; 0.75 < r < 1), the favorable score for the first measurement being a statistically relevant benchmark for the second (sig < 0.05).


1991 ◽  
Vol 65 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Paul Deurenberg ◽  
Jan A. Weststrate ◽  
Jaap C. Seidell

In 1229 subjects, 521 males and 708 females, with a wide range in body mass index (BMI; 13.9–40.9 kg/m2), and an age range of 7–83 years, body composition was determined by densitometry and anthropometry. The relationship between densitometrically-determined body fat percentage (BF%) and BMI, taking age and sex (males =1, females = 0) into account, was analysed. For children aged 15 years and younger, the relationship differed from that in adults, due to the height-related increase in BMI in children. In children the BF% could be predicted by the formula BF% = 1.51xBMI–0.70xage–3.6xsex+1.4 (R2 0.38, SE of estimate (see) 4.4% BF%). In adults the prediction formula was: BF% = 1.20xBMI+0.23xage−10.8xsex–5.4 (R2 0.79, see = 4.1% BF%). Internal and external cross-validation of the prediction formulas showed that they gave valid estimates of body fat in males and females at all ages. In obese subjects however, the prediction formulas slightly overestimated the BF%. The prediction error is comparable to the prediction error obtained with other methods of estimating BF%, such as skinfold thickness measurements or bioelectrical impedance.


Author(s):  
Katie M. Heinrich ◽  
Konstantin G. Gurevich ◽  
Anna N. Arkhangelskaia ◽  
Oleg P. Karazhelyaskov ◽  
Walker S. C. Poston

In some countries, obesity rates among police officers are higher than the general public, despite physically demanding jobs. Obesity rates based on body mass index (BMI) may lack accuracy as BMI does not directly address body composition. Since data are lacking for obesity rates among Russian police officers, this study documented and compared officer obesity rates to the adult Russian population and compared the accuracy of body mass index (BMI) for obesity classification to two direct measures of body composition. Moscow region police officers (N = 182, 84% men) underwent height, weight, waist circumference (WC), and body fat percentage (BF%) bioelectrical impedance measurements during annual medical examinations. BMI-defined obesity rates were 4.6% for men and 17.2% for women, which were >3 and >1.8 times lower than Russian adults, respectively. WC-defined obesity rates were similar to BMI (3.3% for men and 10.3% for women), but BF%-defined obesity rates were much higher (22.2% for men and 55.2% for women). Although obesity rates were lower than those found among police officers in other countries, BMI alone was not a particularly accurate method for classifying weight status among Russian police officers.


2002 ◽  
Vol 55 (9-10) ◽  
pp. 407-411 ◽  
Author(s):  
Edita Stokic ◽  
Biljana Srdic ◽  
Andrea Peter ◽  
Tatjana Ivkovic-Lazar

Obesity is characterized by excessive body fat accumulation which may lead to serious health problems and complications. Body mass index is the most optimal parameter to evaluate the level of nutritional status and diagnose obesity. However, modern techniques studying body composition can more accurately determine whether the gain of body weight was on the account of body fat, lean body mass or total body water. If one's body mass index is in the range of normal values but the amount of body fat is above normal range, we talk about sarcopenic obesity. In order to evaluate presence of sarcopenic obesity, a group of 140 normal weight students of the Faculty of Medicine in Novi Sad were measured. Apart from standard anthropometrical parameters the amount of body fat was also determined by using the method of bioelectrical impedance analysis. Sarcopenic obesity was diagnosed in 25.71% of examined students. By using body mass index values this type of obesity cannot be diagnosed, and knowing that a higher amount of body fat in normal weight persons can lead to complications, especially metabolic, it is of great importance to evaluate the amount of body fat accurately.


2021 ◽  
Vol 9 ◽  
Author(s):  
David J. Farbo ◽  
Deborah J. Rhea

Background: Body mass index (BMI) is frequently labeled as “flawed” in assessing obesity since it cannot differentiate between muscle and fat leading to misclassifications of healthy individuals. Bioelectrical impedance analysis (BIA) may be a more accurate indicator of obesity since it can distinguish the difference between muscle and fat in children. This pilot study investigated discrepancies between BMI and BIA body composition classifications in children with high levels of physical activity.Methods: Participants were selected from three elementary schools (N = 380, K = 76, 1st = 64, 2nd = 62, 3rd = 61, 4th = 83, and 5th = 34) receiving 60 min of outdoor, unstructured play daily. BIA scales were used to collect each child's body fat percentage and BMI score, then those numbers were categorized by BIA and BMI normative values as either underweight, healthy, overweight, or obese.Results: Overall, 26% of the students were classified differently when using the normative classifications for BMI and BIA, with the largest discrepancy found in the overweight category at 38%. Similar inconsistencies were found when students were divided as younger (42%) vs older students (36%), and males (40%) vs. females (35%).Conclusions: This pilot study demonstrated that there is a significant difference in how BMI and BIA discriminate between the different body composition categories. BIA consistently shows to be a more accurate tool in assessing obesity rates in children since it directly measures body fat.


Sign in / Sign up

Export Citation Format

Share Document