scholarly journals THE RELATIONSHIP BETWEEN BODY MASS INDEX AND BODY FAT PERCENTAGE, ESTIMATED BY BIOELECTRICAL IMPEDANCE IN A GROUP OF ROMANIAN FEMALE STUDENTS

2021 ◽  
Author(s):  
Diana Vrabie ◽  
George-Sebastian Iacob

Bioelectrical impedance analysis (BIA) also called bioelectrical impedance (BEI) is a non-invasive method based on the electric conductibility properties of tissues and is a commonly used technique for estimating body composition.Percentage of body fat is strongly associated with the risk of several chronic diseases but its accurate measurement is difficult. Body Mass Index is a useful population-level measure of overweight and obesity. It is used for all categories of people, male or female.The main objective of this study was to determine if there is a relationship between BMI and body fat percentage (BF%) in a group of Romanian female students. This relationship has been studiedin various ethnic groups before. To conduct the study, we examined 29 young females (aged 20-36 years old) estimating BF% from bioelectrical impedance analysis using Tanita Body Fat Monitor Scale UM-076.In this research group, the BMI and BodyFat dependent variables have a moderate to strong correlation (r = .839; 0.75 < r < 1), the favorable score for the first measurement being a statistically relevant benchmark for the second (sig < 0.05).

Author(s):  
Katie M. Heinrich ◽  
Konstantin G. Gurevich ◽  
Anna N. Arkhangelskaia ◽  
Oleg P. Karazhelyaskov ◽  
Walker S. C. Poston

In some countries, obesity rates among police officers are higher than the general public, despite physically demanding jobs. Obesity rates based on body mass index (BMI) may lack accuracy as BMI does not directly address body composition. Since data are lacking for obesity rates among Russian police officers, this study documented and compared officer obesity rates to the adult Russian population and compared the accuracy of body mass index (BMI) for obesity classification to two direct measures of body composition. Moscow region police officers (N = 182, 84% men) underwent height, weight, waist circumference (WC), and body fat percentage (BF%) bioelectrical impedance measurements during annual medical examinations. BMI-defined obesity rates were 4.6% for men and 17.2% for women, which were >3 and >1.8 times lower than Russian adults, respectively. WC-defined obesity rates were similar to BMI (3.3% for men and 10.3% for women), but BF%-defined obesity rates were much higher (22.2% for men and 55.2% for women). Although obesity rates were lower than those found among police officers in other countries, BMI alone was not a particularly accurate method for classifying weight status among Russian police officers.


2004 ◽  
Vol 92 (5) ◽  
pp. 827-832 ◽  
Author(s):  
Marta Arroyo ◽  
Ana M. Rocandio ◽  
Laura Ansotegui ◽  
Hector Herrera ◽  
Itziar Salces ◽  
...  

The objective of the present study was to compare different methods for evaluating body fat percentage (BF%) (anthropometric methods and bioelectrical impedance analysis) in university students. Subjects were 653 healthy students whose mean age, body height, body weight and BMI were 21·1 (SD 2·5) years, 166·0 (SD 8·4) cm, 62·8 (SD 11·0) kg and 22·7 (SD 3·1) kg/m2, respectively. Results showed that BMI is a poor predictor of body fatness since the sensitivity was low in comparison with the reference method (Siri equation). The lowest values of BF% were obtained using the reference method (Siri equation) (21·8 (SD 6·8)%). The two methods with the highest agreement were Siri and Lean (mean difference, −0·5), followed by Brozek (mean difference, −1·4) and Deurenberg (mean difference, −1·5). The largest mean difference for BF% was between Siri and impedance (−4·5). Although the methods and/or equations used in the present study have been commonly utilised to estimate BF% in young adults, the results must be interpreted with caution in the diagnosis and monitoring of overweight and obesity.


2014 ◽  
Vol 28 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Marcelo Custódio Rubira ◽  
Ana Paula Fernandes de Angelis Rubira ◽  
Lucas De Angelis Rubira ◽  
Milton Carlos Martins Lima ◽  
Roberto Jorge da Silva Franco ◽  
...  

Body composition has fundamental importance in the quality of life and is a powerful predictor of mortality and morbidity in humans. The identification and monitoring of the amount of body fat have been receiving special attention in aspects related to health promotion, not just for its actions in the prevention and in the control of cardiovascular diseases but also for their induction and association with risk factors, especially in the plasmatic lipid levels and arterial pressure. It was investigated the relationship between body mass index (BMI) and body fat percentage (%BF) by bioelectrical impedance analysis (BIA) with the blood pressure levels (systolic and diastolic) and serum lipids (TC, HDL-c, LDL-c, VLDL-c, TG). In a group of fifty seven women (aged 18 to 26 years old ), obesity was detected in 5 and 19 women by BMI (≥ 30 kg/m2) and %BF (≥ 30%), respectively. BMI and % BF were positively correlated with blood pressure (systolic and diastolic), and highly significant in the obese group by %BF. Moreover, BMI and % BF were significantly correlated with all lipids and lipoprotein fractions VLDL-c and triglyceride, respectively. These results suggest that %BF is a good indicator of “occult obesity” in subjects with normal body mass index. The associated use of BMI and %BF to better evaluate obesity may improve the study of blood pressure levels and serum lipid changes that are commonly associated with obesity.


2021 ◽  
Vol 9 ◽  
Author(s):  
David J. Farbo ◽  
Deborah J. Rhea

Background: Body mass index (BMI) is frequently labeled as “flawed” in assessing obesity since it cannot differentiate between muscle and fat leading to misclassifications of healthy individuals. Bioelectrical impedance analysis (BIA) may be a more accurate indicator of obesity since it can distinguish the difference between muscle and fat in children. This pilot study investigated discrepancies between BMI and BIA body composition classifications in children with high levels of physical activity.Methods: Participants were selected from three elementary schools (N = 380, K = 76, 1st = 64, 2nd = 62, 3rd = 61, 4th = 83, and 5th = 34) receiving 60 min of outdoor, unstructured play daily. BIA scales were used to collect each child's body fat percentage and BMI score, then those numbers were categorized by BIA and BMI normative values as either underweight, healthy, overweight, or obese.Results: Overall, 26% of the students were classified differently when using the normative classifications for BMI and BIA, with the largest discrepancy found in the overweight category at 38%. Similar inconsistencies were found when students were divided as younger (42%) vs older students (36%), and males (40%) vs. females (35%).Conclusions: This pilot study demonstrated that there is a significant difference in how BMI and BIA discriminate between the different body composition categories. BIA consistently shows to be a more accurate tool in assessing obesity rates in children since it directly measures body fat.


Sign in / Sign up

Export Citation Format

Share Document