scholarly journals Complex coacervates between bovine serum albumin and anionic polysaccharides: formation and characterization

2021 ◽  
Vol 24 ◽  
Author(s):  
Lorena Oliveira Ferreira ◽  
Monique Barreto Santos ◽  
Edwin Elard Garcia-Rojas

Abstract The comparative study regarding complexes coacervated between Bovine Serum Albumin (BSA) and different polysaccharides, Pectin (PEC) and Gum Acacia (GA), was carried out by evaluating the influence of different ratios (protein:polysaccharide) and sodium chloride (NaCl) concentrations on turbidity and zeta potential. The BSA:PEC complexes were formed in a 10:1 ratio whereas BSA:GA at 3:1. The complexation pH showed different behavior, BSA: PEC complexes exhibited maximum turbidity in a wide pH range (4.9 to 1.5), while BSA: GA had maximum turbidity at pH 3.5. The increase in the concentration of NaCl negatively influenced the complexation. The NaCl concentration of 0.40 mol L-1 suppressed the interaction in BSA:PEC (10:1) and reduced the range formation of BSA:GA (3:1). The Fourier Transform Infrared (FTIR) demonstrated the participation not only of electrostatic interactions, but also of hydrogen bonds in the complexation. This initial study elucidated fundamental aspects about the formation of coacervate complexes between BSA:GA/PEC that assist in directing its application in food products especially, in acidic matrices (pH~4.0) as well as with low concentration of salts, in view of the effect of pH on maximum formation and sensitivity to NaCl. These complexes can be added directly to products in order to add nutritional value or even be used as a new matrix for the encapsulation of bioactive compounds.

RSC Advances ◽  
2019 ◽  
Vol 9 (27) ◽  
pp. 15431-15436 ◽  
Author(s):  
Haibing Tian ◽  
Wanyi Xie ◽  
Shixuan He ◽  
Daming Zhou ◽  
Shaoxi Fang ◽  
...  

Nanopore technology was introduced for the study of the interaction between bovine serum albumin (BSA) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) phospholipids.


2018 ◽  
Vol 51 (6) ◽  
pp. 279-286 ◽  
Author(s):  
Zhenxing Chi ◽  
Bowen Hong ◽  
Xiulian Ren ◽  
Kunyu Cheng ◽  
Yuqian Lu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
K. Grigoryan ◽  
H. Shilajyan

The interaction of iodine with bovine serum albumin (BSA) in dimethylsulfoxide (DMSO) aqueous solutions was studied by means of fluorescence and UV/Vis absorption spectroscopy methods. Physicochemical peculiarities of these solutions were revealed. The results showed that the tri-iodide ion formed in the 1DMSO : 2H2O solution caused the fluorescence quenching of BSA. The modified Stern-Volmer quenching constant and corresponding thermodynamic parameters, the free energy change (), enthalpy change (), and entropy change (), at different temperatures (293, 298, and 303 K) were calculated, which indicated that the hydrophobic and electrostatic interactions were the predominant operating forces. The binding locality distance r between BSA and tri-iodide ion at different temperatures was determined based on Förster nonradiation fluorescence energy transfer theory.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sergio-Miguel Acuña-Nelson ◽  
José-Miguel Bastías-Montes ◽  
Fabiola-Rossana Cerda-Leal ◽  
Julio-Enrique Parra-Flores ◽  
Juan-Salvador Aguirre-García ◽  
...  

Protein adsorption is influenced by many factors such as temperature, pH, protein size and structure, or surface energy and roughness, among others. Self-assembled monolayers (SAMs) and the Langmuir-Blodgett (LB) technique are two of the techniques more used to produces ultrathin films of proteins on surfaces. In this work, we established protocols for the preparation of nanocoatings of bovine serum albumin (BSA) protein on glass surface using SAMs and LB. Furthermore, we determined how small changes in temperature and pH can affect the covering when SAMs are used. Using a combination of different analyses, such as relative roughness, dynamic contact angles, and atomic force microscopy (AFM), it was possible to establish conditions to obtain a uniform nanocoating using SAMs. The results of the analysis of the nanocoating performed using the LB technique were very similar to those obtained using SAMs. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory in conjunction with the AFM images showed that electrostatic interactions are very important in the self-assembly process, but a process dominated solely by attraction is not sufficient to achieve a good SAM nanocoating, since it does not allow proper orientation and packaging of BSA molecules on the glass surface.


1971 ◽  
Vol 49 (12) ◽  
pp. 1267-1275 ◽  
Author(s):  
D. E. Goldsack ◽  
P. M. Waern

Pressure jump kinetic studies of the conformational change occurring in bovine serum albumin in neutral solutions have been carried out over the pH range 6.5–9.5. Two distinct relaxation effects are observed at each pH. The faster relaxation is attributed to binding of the dye to the protein, and the slower relaxation is related to the conformational change occurring in the protein. This slower relaxation effect is pH dependent with a maximum value near pH 8. Detailed analysis of these data leads to a mechanism for the conformational change which indicates that the one form of the protein has an ionizable group with a pK of 8.7 which changes to a pK of 6.7 when the protein undergoes the conformational change. A simple iterative procedure is given for analyzing the pH dependence of a relaxation time constant for a cyclic mechanism involving only one ionizing group controlling the conformational change.


1986 ◽  
Vol 236 (1) ◽  
pp. 307-310 ◽  
Author(s):  
M Y Khan

The domain III of bovine serum albumin containing residues 377-582 of the protein sequence was isolated and its behaviour in acid solution was studied. The fragment was found to undergo structural transformations over the pH range 3.5-4.5 known to cause N-F transition in serum albumin. On the other hand, an albumin fragment that was devoid of domain III was unable to exhibit such a transition. These results were consistent with a mechanism where N-F transition involves the separation of domain III from the rest of the albumin starts at about pH 4.3 and is completed at pH 3.5.


2020 ◽  
Author(s):  
Yin Hui Chow ◽  
Alagan Sahlini ◽  
Hui-Suan Ng ◽  
Chi-Wei Lan

Abstract A green bio-separation alternative can be performed with a non-toxic and biodegradable aqueous biphasic system (ABS) composed of short-chain aliphatic alcohol-based top phase (1-propanol and 2-propanol) and carbohydrate-based bottom phase (glucose, sucrose, and maltose). A model protein, bovine serum albumin (BSA) was adopted to determine the effects of types and concentration of phase-forming components; protein concentration; and system pH on the protein partition efficiency in the ABS. Results showed that the 1-propanol/maltose ABS gave an overall better partition efficiency of BSA to the alcohol-rich top phase compared to the 1-propanol/sucrose ABS, 1-propanol/glucose ABS, and 2-propanol/sugar ABS attributed to the lower hydrophilicity of 1-propanol and the stronger sugaring-out effect exerted by the maltose. A maximum partition coefficient (K) of 20.01 ± 0.05 and recovery yield (Y) of 95.42% ± 0.01 of BSA were obtained with the 35% (w/w) 1-propanol/22% (w/w) maltose ABS at pH 5.0 which contained 10% (w/w) BSA. The K and Y of BSA in 1-propanol/maltose ABS was further enhanced with the addition of 3% (w/w) of ionic liquids, 1-butyl-3-methylimidazolium bromide ([Bmim]Br) as the adjuvants which provides the protein stabilizing effect. The Fourier Transform Infrared Spectrum (FTIR) analysis revealed that the protein structure remained unaltered upon the separation process.


1975 ◽  
Vol 42 (2) ◽  
pp. 267-275 ◽  
Author(s):  
J. G. Zadow ◽  
R. D. Hill

SummaryCarboxymethyl cellulose (CMC) formed insoluble complexes with β-lactoglobulin, bovine serum albumin and Na caseinate. Maximum precipitation of the β-lactoglobulin-CMC complex occurred at pH 3·2, whereas maximum precipitation of the bovine serum albumin-CMC complex and the Na caseinate-CMC complex occurred at pH 2·8. The ratio of CMC to protein for maximum precipitation depended on the protein, being greatest for Na caseinate and least for bovine serum albumin. The percentage of protein precipitated by CMC decreased with increasing ionic strength of the solution, the rate of decrease being least for bovine serum albumin. At a given ionic strength, more protein was precipitated by CMC of high degree of substitution than by CMC of low degree of substitution. The change in pH (ΔpH) occurring on mixing CMC and unbuffered protein solutions, each initially at the same pH, was measured. ΔpH was negative for β-lactoglobulin-CMC mixtures over the pH range 7–2 (minimum at pH 5·5). For bovine serum albumin-CMC and Na caseinate-CMC mixtures, ΔpH was positive between pH 7 and 3·2 (maximum at pH 4·5), zero at pH 3·2 and negative between pH 3·2 and 2·0 (minimum at pH 2·8).


2007 ◽  
Vol 330-332 ◽  
pp. 861-864 ◽  
Author(s):  
Xiang Dong Zhu ◽  
Hong Song Fan ◽  
X. N. Chen ◽  
Dong Xiao Li ◽  
Xing Dong Zhang

Protein adsorption is driven by various interactions. The contribution of surface charge to bovine serum albumin (BSA) adsorption on hydroxyapatite (HA) ceramic was investigated by adjusting the liquid environment in which the solid particles dispersed. Zeta potentials of HA and the adsorption of BSA on the surface were tested as a function of pH, ionic strength, Ca2+ and PO4 3- concentrations in the aqueous solutions, and the results showed that both of them were greatly affected by those experimental variations. Besides, the amount of adsorbed BSA was related to the variation of zeta potential of HA, as could be well understood in terms of electrostatic interactions.


Sign in / Sign up

Export Citation Format

Share Document