scholarly journals Influence of arbuscular mycorrhizal fungi on the vegetative development of citrus rootstocks1

2016 ◽  
Vol 46 (4) ◽  
pp. 407-412 ◽  
Author(s):  
Marina Martinello Back ◽  
◽  
Taís Altmann ◽  
Paulo Vitor Dutra de Souza

ABSTRACT The use of arbuscular mycorrhizal fungi (AMF) in the production of rootstocks is an alternative to accelerate plant growth. However, their response depends on the symbionts species and environment. This study aimed at evaluating the influence of AMF species [Scutelospora heterogama, Gigaspora margarita, Glomus etunicatum, Acaulospora sp. and a control (non-inoculated)] on the vegetative development of citrus rootstocks {citrange 'Fepagro C37 Reck' [P. trifoliata (L.) Raf. x C. sinensis (L.) Osbeck.] and 'Kumquat' [Fortunella hindsii (L.) Swingle]}. The experimental design consisted of split-plot randomized blocks, with 10 plants per plot and 3 replications. Height, stem diameter, number of leaves, leaf area and fresh and dry root and shoot mass were evaluated. The colonization of AMF in the roots was also assessed, determining the percentage of colonization and density of hyphae, arbuscules and vesicles. The rootstocks showed no difference for the plant growth parameters, in the absence of AMF. The AMF species colonized the rootstocks roots, but were only effective in accelerating the citrange 'Fepagro C37 Reck' growth, especially when inoculated with Scutelospora heterogama, Gigaspora margarita and Glomus etunicatum. The influence of AMF on vegetative development depends on the citrus rootstock species.

2020 ◽  
Vol 17 (4) ◽  
pp. 150
Author(s):  
O. TRISILAWATI

<p>ABSTRACT</p><p>The effects of several arbuscular mycorrhizal fungi (AMF) on thegrowth, nutrient uptake (nitrogen, phosphorus, and potassium), and acidphosphate activity of two promising numbers of Anacardium occidentaleseedling were evaluated. The experiment was conducted in the greenhouse of Indonesian Spices and Medicinal Crops Research Institute(BALITTRO) in 2002 for six months on a randomized design with twofactors and four replicates. First factor was isolate (six isolates of AMFand one control) consisting of : 1) control; 2) Glomus aggregatum; 3)Glomus etunicatum; 4) Mycofer; 5) Glomus sp.; 6) a mixture of Glomussp1, Glomus sp2, Glomus sp3, Glomus sp4, Glomus etunicatum,Gigaspora margarita, Gigaspora sp., and Enthropospora sp., and 7)Gigaspora sp. The second factor was two cashew promising numbers :Asembagus and Wonogiri. The results showed that AMF inoculationsignificantly affected the growth of cashew. Mycofer and mixed AMFwere more effective to Wonogiri promising number, while for Asembaguspromising number inoculation of mycofer was more effective. Inoculationwith mycofer to Asembagus promising number increased the uptake of Pand K nutrients by 65 and 53% while inoculation with mycofer and mixedAMF to Wonogiri promising number increased the uptake of N, P and Knutrients by 55, 38, and 17%, and by 18, 31, and 17%. Moreover, theAMF inoculation resulted in higher phosphatase activity. In mycorrhizalAsembagus promising number infected by mixed AMF, the increment ofphosphatase activity was 136.5%, whether in Wonogiri promising numberinfected by mycofer, the increment of phosphatase activity was 80% thancontrol.</p><p>Key words: Anacardium occidentale, promising number, growth,phosphatase activity</p><p>ABSTRAK</p><p>Pengaruh Pupuk Hayati Fungi Mikoriza Arbuskula(FMA) terhadap Pertumbuhan Benih Jambu Mete</p><p>Penelitian ini bertujuan untuk mengetahui pengaruh beberapa jenisfungi mikoriza arbuskula (FMA) terhadap pertumbuhan, serapan hara danaktivitas enzim fosfatase dari dua nomor harapan benih jambu mete(Anacardium occidentale). Penelitian dilakukan di rumah kaca Balittropada tahun 2002 selama 6 bulan, menggunakan rancangan acak yangterdiri dari dua faktor dan diulang empat kali. Faktor pertama adalahisolate (6 jenis isolat FMA dan satu kontrol) yaitu: 1). kontrol; 2). Glomusaggregatum; 3) Glomus etunicatum; 4). Mycofer; 5). Glomus sp.; 6).campuran dari Glomus sp1, Glomus sp2, Glomus sp3, Glomus sp4, Glomusetunicatum, Gigaspora margarita, Gigaspora sp., Enthropospora sp., dan7). Gigaspora sp. Faktor kedua adalah nomor harapan jambu mete, yaituAsembagus dan Wonogiri. Hasil penelitian mendapatkan bahwa inokulasiFMA berpengaruh nyata terhadap pertumbuhan jambu mete. Mycofer dancampuran FMA lebih efektif berpengaruh terhadap nomor harapanWonogiri, sedangkan mycofer lebih efektif berpengaruh terhadap nomorharapan Asembagus. Serapan hara P dan K pada nomor harapanAsembagus yang diinokulasi mycofer meningkat sebesar 65 dan 53%,sedangkan nomor harapan Wonogiri yang diinokulasi mycofer dancampuran FMA, serapan hara N, P, dan K meningkat masing-masingsebesar 55; 38; dan 17%, dan 18; 31; dan 17%. Selain itu, inokulasi FMAdapat meningkatkan aktivitas fosfatase akar jambu mete. Peningkatanaktivitas fosfatase akar jambu mete nomor harapan Asembagus yangterinfeksi oleh campuran FMA sebesar 136,5%, sedangkan pada nomorharapan Wonogiri yang terinfeksi mycofer, peningkatnnya sebesar 80%dibandingkan kontrol.</p><p>Kata kunci: Anacardium occidentale, nomor harapan, pertumbuhan,aktivitas fosfatase</p>


2021 ◽  
Vol 9 (7) ◽  
pp. 1491
Author(s):  
Alka Sagar ◽  
Parikshita Rathore ◽  
Pramod W. Ramteke ◽  
Wusirika Ramakrishna ◽  
Munagala S. Reddy ◽  
...  

Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.


Author(s):  
Ouattara Brahima ◽  
Abo Kouabenan ◽  
Tuo Seydou ◽  
Silue Nakpalo ◽  
Kone N’golo Abdoulaye ◽  
...  

Data on tomato fitness improvement by arbuscular mycorrhizal fungi (AMF) remain patchy. The present study was initiated to evaluate the effect of the period of AMF inoculation as well as the level of mineral manure on tomato growth. The experiment took place from June to October 2016, in the West African Science Service Center on Climate Change and Adapted Land Use greenhouse. AMF inocula were applied to seeds and/or transplants, each receiving three different levels of chemical fertilizer. The impact of the inoculation period and the level of fertilization, were assessed on plant growth parameters, including height, number of functional leaves, root-collar diameter, and root length. Observation of hyphae, arbuscules and vesicles was carried out by roots staining method and anabled the determination of mycorrhization parameters. Plants Mycorrhizal dependence was assessed with their fresh and dry mass. An analysis of variance and post ANOVA analysis was performed using the Newman-Keuls test (P= .05) for the comparison of means. The findings pointed that, when transplanting, the difference between mycorrhized plants and non-mycorrhized ones was very highly significant in terms of the height of the stem (P= .00), the length of the taproot, and the root collar diameter. The lower the level of manure was, the higher the frequency of infection has been (73.33% for MS1 and MSR1; 76.67% for MR1).Transplants growing without a supply of mineral manure expressed greater mycorrhizal dependence (66% for MSR1). Arbuscular mycorrhization of the tomato is profitable for its optimal development. The endomycorrhization of tomato can be done during sowing or transplanting with the same benefits but, with a low level of fertilizer. So, it’s necessary to controll the intake of mineral manure because it influences the natural mycorrhization of plants.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


Author(s):  
Kamile Ulukapı ◽  
Zehra Kurt ◽  
Sevinc Sener

Arbuscular mycorrhizal fungi (AMF), which are beneficial soil organisms, have an important role in the uptake of plant nutrients by roots and thus help to healthy plant growth. The aim of this study was to determine the effects of AMF inoculation on the development of water-deficiency applied pepper plants. In this study, Tesla F1 pepper cultivars, Glomus etunicatum inoculated and without Glomus etunicatum, were exposed to four different irrigation regimes (25I, 50I, 75I, 100I). At the end of the experiment these plants were compared in terms of some vegetative and fruit properties. For this purpose, at the end of the trial; shoot length (cm), root length (cm), root spread (cm), number of leaves, leaf width and length (mm), stem diameter (mm), fruit width (mm), fruit length (mm), root and shoot weights (g), fruit pH, total soluble solid content and chlorophyll index were measured. P (phosphorus) and K (potassium) contents of leaves samples taken from plants were determined. As a result, it was determined that 75I irrigation regime gave the best results in terms of both plant growth and fruit properties in all mycorrhizal and non-mycorrhizal plants. It was also concluded that 75% irrigation level is sufficient for plant growth.


Sign in / Sign up

Export Citation Format

Share Document