scholarly journals Su Kısıtı Koşullarında Biber (Capsicum annuum L.) Bitkisinde Mikoriza Uygulamasının Vejetatif ve Generatif Gelişme Üzerinde Etkileri

Author(s):  
Kamile Ulukapı ◽  
Zehra Kurt ◽  
Sevinc Sener

Arbuscular mycorrhizal fungi (AMF), which are beneficial soil organisms, have an important role in the uptake of plant nutrients by roots and thus help to healthy plant growth. The aim of this study was to determine the effects of AMF inoculation on the development of water-deficiency applied pepper plants. In this study, Tesla F1 pepper cultivars, Glomus etunicatum inoculated and without Glomus etunicatum, were exposed to four different irrigation regimes (25I, 50I, 75I, 100I). At the end of the experiment these plants were compared in terms of some vegetative and fruit properties. For this purpose, at the end of the trial; shoot length (cm), root length (cm), root spread (cm), number of leaves, leaf width and length (mm), stem diameter (mm), fruit width (mm), fruit length (mm), root and shoot weights (g), fruit pH, total soluble solid content and chlorophyll index were measured. P (phosphorus) and K (potassium) contents of leaves samples taken from plants were determined. As a result, it was determined that 75I irrigation regime gave the best results in terms of both plant growth and fruit properties in all mycorrhizal and non-mycorrhizal plants. It was also concluded that 75% irrigation level is sufficient for plant growth.

2016 ◽  
Vol 46 (4) ◽  
pp. 407-412 ◽  
Author(s):  
Marina Martinello Back ◽  
◽  
Taís Altmann ◽  
Paulo Vitor Dutra de Souza

ABSTRACT The use of arbuscular mycorrhizal fungi (AMF) in the production of rootstocks is an alternative to accelerate plant growth. However, their response depends on the symbionts species and environment. This study aimed at evaluating the influence of AMF species [Scutelospora heterogama, Gigaspora margarita, Glomus etunicatum, Acaulospora sp. and a control (non-inoculated)] on the vegetative development of citrus rootstocks {citrange 'Fepagro C37 Reck' [P. trifoliata (L.) Raf. x C. sinensis (L.) Osbeck.] and 'Kumquat' [Fortunella hindsii (L.) Swingle]}. The experimental design consisted of split-plot randomized blocks, with 10 plants per plot and 3 replications. Height, stem diameter, number of leaves, leaf area and fresh and dry root and shoot mass were evaluated. The colonization of AMF in the roots was also assessed, determining the percentage of colonization and density of hyphae, arbuscules and vesicles. The rootstocks showed no difference for the plant growth parameters, in the absence of AMF. The AMF species colonized the rootstocks roots, but were only effective in accelerating the citrange 'Fepagro C37 Reck' growth, especially when inoculated with Scutelospora heterogama, Gigaspora margarita and Glomus etunicatum. The influence of AMF on vegetative development depends on the citrus rootstock species.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 446B-446
Author(s):  
Martha Elena Pedraza-Santos ◽  
David Jaen-Contreras ◽  
M. Alejandra Gutièrrez-Espinosa ◽  
Teresa Colinas-Leon ◽  
Cristina Lopez-Peralta

Effects of inoculation with arbuscular endomycorrhizal fungi (Acaulospora scrobiculata and Glomus mosseae) on acclimatization and growth of chrysanthemum (Dendrathema glandiflora Tzevelev) plants, propagated in vitro, under different conditions of fertilization (0, 20, and 40 mg·L-1 of NPK) were studied. Mycorrhizal colonization did not influence surviving percentage of chrysanthemum plantlets during the acclimatization stage; however, we could colonize the developing roots and reduce the amount of inoculum needed and beneficial effects on plant growth were obtained during early stages of colonizing. Plant growth in greenhouse was regulated by synergism between the effect of endomycorrhizal fungus type and soil fertilization with N, P, and K. Effects of A. scrobiculata were observed as an increasein number of leaves, leaf area, stem diameter, root volume and fresh and dry weight of leaves, stem and root. The G. mosseae fungus improved N, P, Mg, and Zn content in leaves; P, K, Ca, Mg, and Zinc in stem and Ca content in root. On the other hand, A. scrobiculata only increased N content in leaves, stem and roots; P content in leaves and roots, and Ca content in stem. Percentage of mycorrhizal colonization on roots was affected by adding N, P, and K to soil. The highest values were obtained with fertilization doses of 20 mg·L-1. The number of spores of mycorrhizal fungi was increased by adding fertilizer to soil (40 mg·L-1 of NPK).


2019 ◽  
Vol 14 (7) ◽  
pp. 649-657 ◽  
Author(s):  
Li Li ◽  
Jiemin Li ◽  
Jian Sun ◽  
Ping Yi ◽  
Changbao Li ◽  
...  

Background: Phospholipase D (PLD)is closely related to browning and senescence of postharvest longan fruit. Objective: This study investigated the effects of 2-butanol (a PLD inhibitor) on the expression and regulation of PLD during storage of longan fruit at a low temperature. Methods: Senescence-related quality indices showed that the 2-butanol-treated fruit presented lower pericarp browning index, pulp breakdown index and total soluble solid value than the untreated fruit. Results: The fruit treated by 60 µL/L 2-butanol exhibited the strongest inhibition on senescence, which significantly delayed changes in weight, titratable acidity content, total soluble solid content and ascorbic acid content. This treatment maintained a high level of total phenolic content and caused significant inhibition on pericarp browning and pulp breakdown. Through ELISA method, 60 µL/L 2-butanol treatment also reduced PLD activity. Real-time RT-PCR (RT-qPCR) results showed that PLD mRNA expression level was inhibited by 60 µL/L 2-butanol within 15 days. Western-blotting results further confirmed the differential expression of PLD during storage, and a relatively higher expression for PLD protein was found in control compared to the 2-butanoltreated fruit during 15-d storage. Conclusion: These results provided a scientific basis and reference to further investigating postharvest longan quality maintenance by regulating the PLD gene expression.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 449
Author(s):  
Camilo Gutiérrez-Jara ◽  
Cristina Bilbao-Sainz ◽  
Tara McHugh ◽  
Bor-Sen Chiou ◽  
Tina Williams ◽  
...  

The cracking of sweet cherries causes significant crop losses. Sweet cherries (cv. Bing) were coated by electro-spraying with an edible nanoemulsion (NE) of alginate and soybean oil with or without a CaCl2 cross-linker to reduce cracking. Coated sweet cherries were stored at 4 °C for 28 d. The barrier and fruit quality properties and nutritional values of the coated cherries were evaluated and compared with those of uncoated sweet cherries. Sweet cherries coated with NE + CaCl2 increased cracking tolerance by 53% and increased firmness. However, coated sweet cherries exhibited a 10% increase in water loss after 28 d due to decreased resistance to water vapor transfer. Coated sweet cherries showed a higher soluble solid content, titratable acidity, antioxidant capacity, and total soluble phenolic content compared with uncoated sweet cherries. Therefore, the use of the NE + CaCl2 coating on sweet cherries can help reduce cracking and maintain their postharvest quality.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Sign in / Sign up

Export Citation Format

Share Document