scholarly journals Nanoparticles from culture media are internalized by in vitro-produced bovine embryos and its depletion affect expression of pluripotency genes

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Bárbara Melo-Báez ◽  
Edwin A. Mellisho ◽  
Joel Cabezas ◽  
Alejandra E. Velásquez ◽  
Daniel Veraguas ◽  
...  
Author(s):  
Gabriela de Oliveira Fernandes ◽  
Marcella Pecora Milazzotto ◽  
Andrei Antonioni Guedes Fidelis ◽  
Taynan Stonoga Kawamoto ◽  
Ligiane de Oliveira Leme ◽  
...  

Abstract The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.


Metabolomics ◽  
2016 ◽  
Vol 12 (5) ◽  
Author(s):  
Érika Cristina dos Santos ◽  
Camila Bruna de Lima ◽  
Kelly Annes ◽  
Marcella Pecora Milazzotto

2021 ◽  
Vol 10 (14) ◽  
pp. e367101422097
Author(s):  
Arianny Rafaela Neto Silva ◽  
Thaisa Campos Marques ◽  
Elisa Caroline Silva Santos ◽  
Tiago Omar Diesel ◽  
Isabelle Matos Macedo ◽  
...  

The effect of resveratrol supplementation on fresh (E1) or vitrified/warmed (E2) in vitro produced bovine embryos was investigated by evaluating the time-dependent response. After in vitro production, resveratrol (0.5 µM) was added to the incubation media and after two incubation periods with or without resveratrol, blastocysts were re-cultured for 24h. The rates of re-expansion, hatching, total cell number (TCN), apoptotic cells (ACN), reactive oxygen species (ROS) and intracellular glutathione (GSH) content were evaluated. For E1, the re-expansion rate differed at 6 and 10h within and between treatments (P<0.05), as did the re-expansion rate after 24h (P<0.01). The hatching rate increased after 10h with resveratrol (P<0.01) with differences within (P<0.05), but not between treatments after 24h of re-cultivation. At E2, hatching rate differed between treatments at 24h (P<0.01), with higher TCN in resveratrol-treated blastocysts after 10h (P<0.01). Resveratrol supplementation reduced ROS generation in E1 and E2 after 10h of incubation and increased GSH content (P<0.01). These results indicate that supplementation of holding re-cultivation medium with resveratrol for treatment of fresh or vitrified/warmed in vitro produced bovine embryos has a positive and time-dependent effect. The reduction of ROS content, the increase of GSH and the anti-apoptotic ability of resveratrol are responsible for its protective effects, allowing an extension of embryo storage time before transfer to recipients.


Author(s):  
Mustafa Numan BUCAK ◽  
Muharrem SATILMIŞ ◽  
Sedat Hamdi KIZIL ◽  
Tahir KARAŞAHİN ◽  
Numan AKYOL

2020 ◽  
Vol 21 (23) ◽  
pp. 8888
Author(s):  
Bárbara Melo-Baez ◽  
Yat S. Wong ◽  
Constanza J. Aguilera ◽  
Joel Cabezas ◽  
Ana C. F. Mançanares ◽  
...  

During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo–maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo–maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5–5). Individual culture media from in vitro–produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8–16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.


2019 ◽  
Vol 31 (2) ◽  
pp. 306
Author(s):  
Monika Nõmm ◽  
Rando Porosk ◽  
Pille Pärn ◽  
Kalle Kilk ◽  
Ursel Soomets ◽  
...  

Selecting high-quality embryos for transfer has been a difficult task when producing bovine embryos invitro. The most used non-invasive method is based on visual observation. Molecular characterisation of embryo growth media has been proposed as a complementary method. In this study we demonstrate a culture medium sampling method for identifying potential embryonic viability markers to predict normal or abnormal embryonic development. During single embryo culture, 20µL culture media was removed at Days 2, 5 and 8 after fertilisation from the same droplet (60µL). In all, 58 samples were analysed using liquid chromatography–mass spectrometry. We demonstrate that it is possible to remove samples from the same culture medium droplets and not significantly affect blastocyst rate (25.2%). Changes in any single low molecular weight compound were not predictive enough. Combining multiple low molecular weight signals made it possible to predict Day 2 and 5 embryo development to the blastocyst stage with an accuracy of 64%. Elevated concentrations of lysophosphatidylethanolamines (m/z=453, 566, 588) in the culture media of Day 8 well-developing embryos were observed. Choline (104m/z) and citrate (215m/z) concentrations were increased in embryos in which development was retarded. Metabolic profiling provides possibilities to identify well-developing embryos before transfer, thus improving pregnancy rates and the number of calves born.


2007 ◽  
Vol 19 (1) ◽  
pp. 210
Author(s):  
D. M. Kohl ◽  
R. L. Monson ◽  
L. E. Enwall ◽  
J. J. Rutledge

Assessment of morphological stage grade is a subjective procedure. Stage grade is of vital importance to, among other things, recipient synchrony for the purpose of establishing successful pregnancies. Asynchronous embryo transfer has led to decreases in pregnancy rates (Farin et al. 1995 Biol. Reprod. 52, 676–682) and has been implicated in contributing to large offspring syndrome (Young et al. 1996 Theriogenology 45, 231). Differences in embryo kinetics based on culture conditions have been well documented (Mello et al. 2005 Reprod. Fert. Dev. 17, 221 abst). Whether such differences are the result of species, breed, metabolic stress, sire effects, or separation from an in vivo environment has yet to be determined. The correlation between oxygen respiration rates and embryo morphology as well as embryo diameter in bovine embryos produced in vitro has shown promise in the development of a more objective predictor of embryo quality and perhaps pregnancy initiation (Lopes et al. 2005 Reprod. Fert. Dev. 17, 151 abst). As well, recent examination of gene expression patterns of in vitro-derived bovine embryos seems to indicate that longer periods of in vitro culture are associated with lower rates of embryo survival (Lonergan et al. 2006 Theriogenology 65, 137–152). We hypothesize that differences do exist in the number, rate, and morphological appearance of blastocysts and that these parameters are in large part based on culture conditions in vitro. The objective of this experiment was to determine the timing and distribution of blastocyst formation of in vitro-produced bovine embryos cultured in SOF8, CR18AA, and KSOM8, under a standard incubation environment. Bovine ovaries from a local abattoir were aspirated and matured for 18-22. Oocytes were fertilized with frozen-thawed Percoll-separated semen from a Holstein bull. Presumptive zygotes were vortexed to remove cumulus cells and placed into 3 different culture media in a highly humidified atmosphere containing 20% oxygen, 5% carbon dioxide, and compressed air at 38.5�C. Embryos were evaluated specifically at 168 h post-insemination (Day 7) and assigned a morphological stage grade (IETS) to determine fixed time point differences. A total of 6 complete replicates were performed. Only embryos exhibiting the presence of a blastocoel at this time were documented (early blast, mid-blast, expanded blast). At 168 h post-insemination, there were no significant differences in the total number of embryos reaching early or mid-blast stage in any of the media. However, chi-square analysis revealed an increase in the number of expanded blastocysts in SOF (n = 813) and CR1 (n = 838) treatments compared to KSOM (n = 824; P &lt; 0.0001). Expanded blastocysts in SOF were also greater in number than in CR1 (P &lt; 0.05). Embryo selection based on development to the expanded blastocyst stage on Day 7 may prove useful in increasing pregnancy rates, and may validate qualitative correlations based on oxygen consumption and gene expression profiles for embryos produced in vitro.


2006 ◽  
Vol 18 (2) ◽  
pp. 197 ◽  
Author(s):  
B. S. Song ◽  
J. S. Kim ◽  
D. B. Koo ◽  
J. S. Park ◽  
K. K. Lee ◽  
...  

The microenvironment of the follopian tube, in which the oviductal fluid contains a variety of cytokines and growth factors, affects pre-implantation development of fertilized embryos in mammals. Prostaglandin I2 (PGI2, prostacyclin) exists in oviductal fluid and is synthesized from arachidonic acid by prostacyclin synthetase. PGI2 also enhances the implantation rate of mouse embryos. In this study, the effect of PGI2 analog on the development of bovine embryos was examined. Bovine cumulus oocytes complexes (COCs) were matured in TCM-199 medium supplemented with 10 IU/mL pregnant mare serum gonadotropin (PMSG), 10 IU/mL hCG, and 10 ng/mL epidermal growth factor (EGF) at 39�C, 5% CO2 in air for 20-22 h. Following in vitro maturation, COCs were fertilized in Fert-TALP medium containing 0.6% BSA using frozen semen. Also, oocytes matured in vitro were enucleated, individually reconstructed with bESF cells, fused, and then activated by treatment with 5 �M ionomycin for 5 min and 2 mM 6-DMAP for 4 h. In vitro-fertilized (IVF) and nuclear-transferred (NT) eggs were cultured in 50 ��L drops of CR1-aa medium supplemented with 0.3% BSA in the absence or presence of 1 �M PGI2 analog at 39�C, 5% CO2 in air, respectively. At 3 days of culture, cleaved embryos were further cultured in the same culture media supplemented with 10% FBS for 4 days. Allocations of blastocysts to inner cell mass (ICM) and trophoblast (TE) cells were investigated to assess embryo quality. All experiments were repeated more than three times. All data were analyzed by using the Duncan test of ANOVA by the Statistical Analysis System (SAS Institute, Inc., Cary, NC, USA) and numbers of nuclei in blastocysts were expressed as mean � SE. No difference was detected in the cleaved rate of the eggs between the treated- and nontreated groups. IVF zygotes treated with PGI2 analog represented a higher developmental rate (33%, 122/418) to the blastocyst stage than nontreated controls (24%, 107/456) (P < 0.05). Among IVF-derived blastocysts, interestingly, the proportion (46%, 84/181) of expanded blastocysts was significantly higher in the PGI2 analog-treated group compared with that in the nontreated group (28%, 46/164). The number of nuclei in (165 � 6.1, n = 15) in blastocysts in the PGI2 analog-treated group was higher than that (146.12 � 5.7, n = 18) in the nontreated group (P < 0.05). No difference was detected in the ratio of ICM to total cells between PGI2 analog-treated (42.0 � 3.0%) and nontreated groups (41.9 � 2.9%). Like the IVF embryos, NT embryos in the PGI2 analog-treated group showed a higher in vitro developmental rate (33.6%, 43/128) than the nontreated embryos (24.2%, 32/132) (P < 0.05). Our results indicate that PGI2 analog improves the kinetics of embryo development in cattle.


2014 ◽  
Vol 26 (1) ◽  
pp. 157
Author(s):  
S. Demyda-Peyrás ◽  
M. Hidalgo ◽  
J. Dorado ◽  
M. Moreno-Millan

Chromosomal numerical abnormalities (CNA) were described as a major cause of developmental failures in in vitro-produced (IVP) embryos. It has been described that CNA are influenced by the post-fertilization culture environment of the embryo. Furthermore, it was demonstrated that the use of different culture media affects the CNA rates. The addition of granulosa cells during early embryo development is a well-known procedure to simplify the culture of bovine IVP and cloned embryos. This technique avoids the use of culture environments saturated with N2 (tri-gas chambers). The aim of this study was to determine the effect of the addition of granulosa cells in the chromosomal abnormalities of IVP cattle embryos. Cumulus–oocyte complexes (COC) were matured in TCM-199 medium, supplemented with glutamine, sodium pyruvate, FSH, LH, oestradiol, and gentamicin during 20 h at 38.5°C in a 5% CO2 humid atmosphere. Subsequently, matured oocytes were fertilized in IVF-TALP medium using 1 × 106 spermatozoa mL–1, selected through a Percoll gradient centrifugation. After fertilization, zygotes were divided in 2 groups and cultured in TCM-199 medium for 48 h, with (TCM-GC) or without (TCM) the addition of 1 × 106 granulosa cells. These cells were obtained by centrifuging and washing the follicular fluid remaining from searching dishes and adjusted to the working concentration. After culture, a total of 106 early embryos (72 hpi) were cytogenetically evaluated following our standard laboratory techniques. Embryos showing normal development were individually fixed onto a slide, disaggregated into blastomeres with acetic acid, and stained with Giemsa solution. Chromosomal numerical abnormalities were evaluated by direct observation at 1250× magnification in a brightfield microscope. Percentage of normal diploid embryos (D) and abnormal haploid (H), polyploid (P), or aneuploid (A) embryos were determined. Results were statistically compared between treatments using a Z test for proportions. Results were: D = 81.4%, H = 7.2%, P = 7.2%. and A = 3.6% in TCM and D = 84.3%, H = 3.9%, P = 9.8%, and A = 1.9% in TCM-GC. No significant differences (P > 0.05) were found between culture media in the chromosomal abnormality rates. According to our results, the use of somatic cells in co-culture during embryo development did not influence the appearance of abnormal complements in the produced embryos. This would allow the use of GC as a potential complement to simplify the techniques used in the culture of bovine embryos until Day 3.


Sign in / Sign up

Export Citation Format

Share Document