scholarly journals Postharvest physiology of cut flowers

Author(s):  
Lucas Cavalcante da Costa ◽  
Fernanda Ferreira de Araujo ◽  
Wellington Souto Ribeiro ◽  
Mirelle Nayana de Sousa Santos ◽  
Fernando Luiz Finger

Abstract The longevity of cut flowers is limited by their ephemeral nature and by multiple stresses. Impairment in water uptake, depletion of stored carbohydrates, increases in both respiratory activity and ethylene production are signatures of flower senescence. A wide range of techniques is available to extend flower preservation, including the use of flower preservative solutions, ethylene action inhibitors, growth regulators, and control of temperature and flower dehydration. The use of sucrose in pulsing solution, or as a component of vase solution, extends the vase life of flowers by either improving water balance and energy or delaying the senescence via reductions in ethylene biosynthesis. Inhibitors of ethylene production and action affect the longevity by extending the vase life of some ethylene-sensitive flowers. Flowers have intense respiratory activity, which may deplete the limited reserves of carbohydrates in the tissues. Lower temperatures markedly reduce both carbon dioxide concentration and ethylene production as well as its action. However, chilling-sensitive flowers, such as bird-of-paradise, heliconia, orchid, and ginger, cannot be stored below 10 to 13°C due to the intense development of tissue discoloration.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Melada Wongjunta ◽  
Chalermchai Wongs-Aree ◽  
Shoshana Salim ◽  
Shimon Meir ◽  
Sonia Philosoph-Hadas ◽  
...  

There is limited information about the postharvest performance and physiology of Mokara orchid cut flowers, which are a special group of artificially created trigenetic hybrids of Vanda × Arachnis × Ascocentrum. Therefore, we first characterized the patterns of various physiological parameters during vase life of five Mokara hybrids, which differ in their longevity. Then, we examined the effects of ethephon and ethylene inhibitors on these physiological parameters, and on parameters of the ethylene biosynthesis pathway, during vase life of two selected Mokara hybrids, “Moo-deang” and “Dao-lai”, which showed significant differences in their vase life duration and senescence symptoms. The results demonstrate that the differences in vase life longevity among the five Mokara hybrids are due to differences in their ethylene production rates, which regulate flower development processes expressed in bud opening and floret senescence. The results clearly show that ethylene is involved in the regulation of the Mokara flower senescence, and pretreatment with ethylene inhibitors significantly improved their vase life longevity. Thus, ethylene seems to be the main factor that determines the longevity differences of the Mokara hybrids, rather than their water relations parameters. This study can serve as a research tool for developing effective postharvest treatments for Mokara hybrids.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 995
Author(s):  
Mohammad Darvish ◽  
Habib Shirzad ◽  
Mohammadreza Asghari ◽  
Parviz Noruzi ◽  
Abolfazl Alirezalu ◽  
...  

Ethylene is the most important factor playing roles in senescence and deterioration of harvested crops including cut flowers. Brassinosteroids (BRs), as natural phytohormones, have been reported to differently modulate ethylene production and related senescence processes in different crops. This study was carried out to determine the effects of different levels of 24-epibrassinolide (EBL) on ACC oxidase enzyme activity, the final enzyme in ethylene biosynthesis pathway, vase life, and senescence rate in lisianthus cut flowers. Harvested flowers were treated with EBL (at 0, 3, 6, and 9 µmol/L) and kept at 25 °C for 15 days. The ACC oxidase activity, water absorption, malondialdehyde (MDA) production and vase solution absorption rates, chlorophyll and anthocyanin contents, and the vase life of the flowers were evaluated during and at the end of storage. EBL at 3 µmol/L significantly (p ≤ 0.01) enhanced the flower vase life by decreasing the ACC oxidase activity, MDA production and senescence rates, and enhancing chlorophyll and anthocyanin biosynthesis and accumulation, relative water content, and vase solution absorption rates. By increasing the concentration, EBL negatively affected the flower vase life and postharvest quality probably via enhancing the ACC oxidase enzyme activity and subsequent ethylene production. EBL at 6 and 9 µmol/L and in a concentration dependent manner, enhanced the ACC oxidase activity and MDA production rate and decreased chlorophyll and anthocyanin accumulation and water absorption rate. The results indicate that the effects of brassinosteroids on ethylene production and physiology of lisianthus cut flowers is highly dose dependent.


1999 ◽  
Vol 39 (7) ◽  
pp. 911 ◽  
Author(s):  
A. J. Macnish ◽  
P. J. Hofman ◽  
D. C. Joyce ◽  
D. H. Simons

Summary. Treatment of cut flowering Boronia heterophylla (red boronia) stems with 10 L ethylene/L for 72 h at 20°C induced flower senescence and abscission, and thereby reduced stem fresh weight and vase life. Pre-treatment with 1-methylcyclopropene (1-MCP) reduced these ethylene effects. Treatment of B. heterophylla with 10 L ethylene/L for a shorter 12 h period at 20°C did not affect vase life. Rates of endogenous ethylene production by B. heterophylla flowers increased in association with wilting during flower senescence.


2002 ◽  
Vol 42 (5) ◽  
pp. 637
Author(s):  
K.-L. Huang ◽  
L.-J. Liao ◽  
R.-S. Shen ◽  
W.-S. Chen ◽  
Y.-H. Lin

Continuous postharvest treatment of cut rose flowers (Rosa hybrida L. cv. Diana) with maleic acid hydrazide (1.2-dihydro-3,6-pyridazinedione, MH) at 560.5 8-hydroxyquinoline sulfate (HQS) at 388.4 HQS, MH + HQS or sucrose + HQS treatments. The longevity of flowers in MH + sucrose in combination with HQS was extended for 18 days after vase treatments, whereas the longevity of cut flowers was only 4, 6 and 8 days for HQS, MH + HQS and sucrose + HQS, respectively. Cut roses treated with MH + sucrose + HQS in vase solution exhibited greater water uptake and less water loss than those in HQS. The concentrations of various sugars in petals were highest in the sucrose + HQS treatment, and MH + sucrose + HQS > MH + HQS > HQS. Ethylene production was significantly lower in sucrose + HQS or MH + sucrose + HQS treatments in comparison to MH + HQS, or HQS.


2018 ◽  
Vol 47 (2) ◽  
pp. 432-440 ◽  
Author(s):  
Julita RABIZA-ŚWIDER ◽  
Ewa SKUTNIK ◽  
Agata JĘDRZEJUK

Clematis is a new species grown as cut flower, whose vase life is variable and cultivar-depended. Little is known about senescence of its cut flowers and their response to flower preservatives. The aim of the study was to evaluate the effect of a preservative (standard preservative SP, 8-hydroxyquinoline citrate plus sucrose) or a biocide solution (8-HQC) on certain senescence-related processes in cut clematis flowers. Analyses were done immediately after harvest and at the end of the vase life when control flowers held in water were wilting. A possible relationship between senescence parameters and the vase life of clematis taxa was also sought. As in most cut flowers, the contents of reducing sugars and soluble proteins in clematis petals decreased during the vase life while the proteolytic activity, including that of the cysteine protease, increased and was accompanied by accumulation of free proline and ammonium. Cut flower longevity in cultivars under study was not associated with the initial levels of reducing sugars, soluble proteins or free proline. Neither was the initial proteolytic activity or its increase during vase life related to the vase life itself: cultivars having comparable life spans differed dramatically in the initial and final proteolytic activities. Both solutions containing 8-HQC significantly affected the senescence-related processes and flowers held in them had more soluble proteins and lower proteolytic activity (total, and that of the cysteine protease) than control flowers held in water. Approximately a twofold increase in reducing sugars was observed in flowers held in SP relative to those held in water or in 8-HQC while the accumulation of free proline and ammonium was limited in their petals. This suggests a regulating action of exogenous sugar in senescence of clematis flowers. However, the delay of senescence produced by the preservative was not always associated with a longer vase life in any given cultivar. Further studies are needed to elucidate the role of sugar in clematis flower senescence.


2009 ◽  
Vol 57 (2) ◽  
pp. 165-174
Author(s):  
F. Hassan

This investigation was carried out to study the effect of 100, 200 and 300 ppm 8-hydroxyquinoline sulphate (8-HQS) and 5 and 10% sucrose treatments on the vase life and post-harvest quality of cut flowers of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome. All possible combinations of 8-HQS and sucrose were tested. The treatments were applied as holding solutions, and control flowers were held in distilled water till the end of the experiment. All the treatments significantly increased the vase life and number of open florets of Strelitzia reginae cut flowers compared to the control. Applying 8-HQS and sucrose treatments in both seasons improved the vase life and floret longevity of Hippeastrum vittatum cut flowers. In addition, the percentage of fresh weight gain from the initial weight and the carbohydrate content were also enhanced in both cut flower crops. In order to obtain the highest post-harvest quality of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome cut flowers, treatment with 200 ppm 8-HQS + 10% sucrose was recommended.


2004 ◽  
Vol 10 (4) ◽  
Author(s):  
F. Hassan ◽  
G. Schmidt ◽  
Y. M. Hafez ◽  
M. Pogány ◽  
J. Ankush

The effect of STS and 1-MCP on the postharvest quality of carnation and rose cut flowers was studied. Cut flowers of Dianthus c..aryophyllus L. cv. Asso and Rosa hybritia cv. Baroness were treated with silver thiosulfate (STS) at 0.4 mM with sucrose at 50 g 1-t and 1-methylcyclopropene ( I -MCP) at 0.5 g m-3 for 611. Pretreatment with STS and 1-MCP significantly extended the vase life and minimized the % loss of initial weight of carnation and rose cut flowers comparing to the untreated control. The two chemicals applied inhibited the chlorophyll degradation and carbohydrate loss and hence, significantly improved the postharvest quality of carnation and rose cut flowers comparing to the control. Ethylene production by cut flowers was inhibited as a result of using these chemicals. In general, there were no differences between STS and (-MCP but the later does not have the heavy metal implications of STS treatment, and hence, using 1-MCP pretreatment for extending the vase life of carnation and rose cut flowers was recommended.


1994 ◽  
Vol 119 (2) ◽  
pp. 282-287 ◽  
Author(s):  
Steven A. Altman ◽  
Theophanes Solomos

Treating `Elliott's White' cut carnations with 50 or 100 mm aminotriazole for 4 days inhibits the respiratory climacteric and significantly extends vase life. Aminotriazole induced time- and concentration-dependent inhibition of ethylene evolution and onset of the ethylene climacteric by inhibiting ACC synthase activity. Flowers treated with 50 or 100 mm aminotriazole for 2 days exhibited concentration-dependent increases in ethylene evolution, respiratory activity, ACC synthase activity, and petal ACC content in response to the application of exogenous ethylene at 10 μl·liter-1. Senescence-associated morphological changes, increased ACC synthase activity, ACC content, and ethylene evolution were completely inhibited in flowers treated for 4 days with 100 mm aminotriazole. Although treatment with 50 mm aminotriazole for 4 days did not completely inhibit components of the ethylene biosynthetic pathway, no morphological or respiratory responses to the application of exogenous ethylene at 10 μl·liter-1 were observed, a result indicating that prolonged aminotriazole treatment inhibited ethylene action. Chemical names used: 3-1H-amino-1,2,4-triazole-1-yl (aminotriazole), 1-aminocyclopropane-1-carboxylic acid (ACC).


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1127d-1127
Author(s):  
Steven A. Altman ◽  
Theophanes Solomos

Sim-type carnation flowers (Dianthus caryophyllus L., cv. Elliot's White) continuously treated with 50 mM or 100 mM 3-amino-1,2,4-triazole (amitrole) and held in the dark at 18°C did not exhibit a respiratory climacteric relative to dH2O-treated controls. No morphological changes symptomatic of floral senescence appeared in treated flowers until 12-15 days post-harvest. Other triazoles were not effective in prolonging senescence. Amitrole appears to inhibit ethylene biosynthesis by blocking the enzyme-mediated conversion of S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylate. Ethylene action appears to be progressively inhibited in that flowers held in treatment solution for 2 d or less responded to application of 10 uL/L exogenous ethylene whereas flowers held 10 d or longer exhibited no response. Electrophoretic resolution of total crude extracts evidenced protein synthesis as well as degradation. Western analysis and total activity assays showed an amitrole concentration-specific inhibition of catalase activity.


Sign in / Sign up

Export Citation Format

Share Document