scholarly journals Hemodynamic parameters and neurogenic pulmonary edema following spinal cord injury: an experimental model

2005 ◽  
Vol 63 (4) ◽  
pp. 990-996 ◽  
Author(s):  
Manoel Baldoino Leal Filho ◽  
Rosana C. Morandin ◽  
Amanda R. de Almeida ◽  
Elizabeth C. Cambiucci ◽  
Konradin Metze ◽  
...  

Neurogenic pulmonary edema is a serious and always life-threatening complication following several lesions of the central nervous system. We report an experiment with 58 Wistar-Hanover adult male rats. Two groups were formed: control (n=4) and experimental (n=54). The experimental group sustained acute midthoracic spinal cord injury by Fogarty’s balloon-compression technique containing 20µL of saline for 5, 15, 30 or 60 seconds. The rats were anesthetized by intraperitoneal (i.p.) sodium pentobarbital (s.p.) 60 mg/Kg. The quantitative neurological outcome was presented at 4, 24 and 48 hours from compression to characterize the injury graduation in different groups. Poor outcome occurred with 60 seconds of compression. Six animals died suddenly with pulmonary edema. Using the procedure to investigate the pulmonary edema during 60 seconds of compression, followed by decompression and time-course of 60 seconds, 20 rats were randomly asigned to one of the following groups: control (1, n=4, anesthetized by i.p. s.p., 60 mg/Kg but without compression) and experimental (2, n=7, anesthetized by i.p. xylazine 10 mg/Kg and ketamine 75 mg/Kg) and (3, n=9, anesthetized by i.p. s.p., 60 mg/Kg). The pulmonary index (100 x wet lung weight / body weight) was 0.395 ± 0.018 in control group, rose to 0.499 ± 0.060 in group 2, and was 0.639 ± 0.14 in group 3. Histologic examination of the spinal cord showed parenchymal ruptures and acute hemorrhage. Comparison of the pulmonary index with morphometric evaluation of edema fluid-filled alveoli by light microscopy showed that relevant intra-alveolar edema occurred only for index values above 0.55. The results suggest that the pulmonary edema induced by spinal compression is of neurogenic nature and that the type of anesthesia used might be important for the genesis of lung edema.

2005 ◽  
Vol 373 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Manoel Baldoino Leal Filho ◽  
Rosana Celestina Morandin ◽  
Amanda Roberta de Almeida ◽  
Elizabeth Cristina Cambiucci ◽  
Guilherme Borges ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 50-55
Author(s):  
V. Medvediev ◽  
Yu. Senchyk ◽  
M. Tatarchuk ◽  
N. Draguntsova ◽  
S. Dychko ◽  
...  

The syndromes of spasticity and chronic pain are diagnosed in the majority of patients in different periods of recovering from spinal injury. Current synthetic or semi-synthetic matrixes, tissue and cell transplants, which are used in the treatment of spinal cord injuries, can affect the development of the syndrome of spasticity and chronic pain.Objective. To examine the effect of fetal cerebellum tissue transplantation (FCTT) on the course of the spasticity and chronic pain syndrome after experimental spinal cord injury.Materials and methods. Animals – albino outbred male rats (5.5 months, 300 grams, inbred line, the original strain – Wistar); main experimental groups: 1 – spinal cord injury only (n = 16), 2 – spinal cord injury + immediate homotopical implantation of a fragment of the fetal cerebellum tissue (n = 15). Model of injury – left-side spinal cord hemisection at Т11 level; verification of spasticity – by Ashworth scale and electroneuromyography, severe pain syndrome – by autophagy.Results. FCTT does not affect the frequency of severe neuropathic pain syndrome, is accompanied by early (1st week) debut of spasticity signs, significantly increases the level of spasticity (1st-3rd weeks), which is most likely due to glutamatergic effect of descendants of immature transplant cells – cerebellar granular neurons precursors. The maximum increase of the spasticity in the case of FCTT was observed at the 3rd week, in the control group – within the 1st and 4th weeks; from the 4th week after FCTT till the end of the experiment stabilization of spasticity rate in the range of 1.8-2.1 points was observed, which is probably due to the autoimmune motoneurons loss in the perifocal area. At the 24th week the level of spasticity in the case of FCTT succumbed to 2.1 ± 0.3 points, in the control group – 2.6 ± 0.4 Ashworth’s points (p > 0.05).Conclusion. Immediate fetal cerebellum tissue transplantation in rats with spinal cord injury causes early pro-spastic effect, in the long term – stabilizes spasticity level.


Author(s):  
Semeleva E.V. ◽  
Blinova E.V. ◽  
Zaborovsky A.V. ◽  
Vasilkina O.V. ◽  
Shukurov A.S.

In this work, we studied the pharmacological activity of zinc and magnesium salts of 2-aminoethanesulfonic acid in white non-linear male rats with amyotrophic lateral sclerosis, which was modeled by neurotoxicantsimplication into the pelvic part of spinal cord. After the reproduction of the pathology in animals, the indices of motor activity were recorded in the Rotarod test, and morphological studies of spinal cord sections stained according to Nisl in the Belshovsky modification were carried out. It was shown that the magnesium salt of 2-aminoethanesulfonic acid (compound LHT-317) to a greater extent reduces the development of motor disorders in experimental animals compared with the control group on the 4th day of observation. The course of intravenous administration of the studied compounds of 2-aminoethanesulfonic acid did not inhibit morphological changes in the spinal cord that develop in degenerative-dystrophic pathology of the central nervous system: connections. Moreover, if, against the background of treatment with zinc salt, the total area of motor zones in animals of the experimental group exceeded that of control rats, then the number of motoneurons did not differ from the control.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Sipin Zhu ◽  
Yibo Ying ◽  
Jiahui Ye ◽  
Min Chen ◽  
Qiuji Wu ◽  
...  

AbstractNeural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso–Beattie–Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.


Spinal Cord ◽  
2021 ◽  
Author(s):  
Helge Kasch ◽  
Uffe Schou Løve ◽  
Anette Bach Jønsson ◽  
Kaare Eg Severinsen ◽  
Marc Possover ◽  
...  

Abstract Study design 1-year prospective RCT. Objective Examine the effect of implantable pulse generator and low-frequency stimulation of the pelvic nerves using laparoscopic implantation of neuroprosthesis (LION) compared with neuromuscular electrical stimulation (NMES) in SCI. Methods Inclusion criteria: traumatic spinal cord injury (SCI), age 18–55 years, neurological level-of-injury Th4–L1, time-since-injury >1 year, and AIS-grades A–B. Participants were randomized to (A) LION procedure or (B) control group receiving NMES. Primary outcome measure: Walking Index for Spinal Cord Injury (WISCI-II), which is a SCI specific outcome measure assessing ability to ambulate. Secondary outcome measures: Spinal Cord Independence Measure III (SCIM III), Patient Global Impression of Change (PGIC), Penn Spasm Frequency Scale (PSFS), severity of spasticity measured by Numeric Rating Scale (NRS-11); International Spinal Cord Injury data sets-Quality of Life Basic Data Set (QoLBDS), and Brief Pain Inventory (BPI). Results Seventeen SCI individuals, AIS grade A, neurological level ranging from Th4–L1, were randomized to the study. One individual was excluded prior to intervention. Eight participants (7 males) with a mean age (SD) of 35.5 (12.4) years were allocated to the LION procedure, 8 participants (7 males) with age of 38.8 (15.1) years were allocated to NMES. Significantly, 5 LION group participants gained 1 point on the WISCI II scale, (p < 0.013; Fisher´s exact test). WISCI II scale score did not change in controls. No significant changes were observed in the secondary outcome measures. Conclusion The LION procedure is a promising new treatment for individuals with SCI with significant one-year improvement in walking ability.


2014 ◽  
Vol 23 (11) ◽  
pp. 1451-1464 ◽  
Author(s):  
Hiroki Iwai ◽  
Satoshi Nori ◽  
Soraya Nishimura ◽  
Akimasa Yasuda ◽  
Morito Takano ◽  
...  

Transplantation of neural stem/progenitor cells (NS/PCs) promotes functional recovery after spinal cord injury (SCI); however, few studies have examined the optimal site of NS/PC transplantation in the spinal cord. The purpose of this study was to determine the optimal transplantation site of NS/PCs for the treatment of SCI. Wild-type mice were generated with contusive SCI at the T10 level, and NS/PCs were derived from fetal transgenic mice. These NS/PCs ubiquitously expressed ffLuc-cp156 protein (Venus and luciferase fusion protein) and so could be detected by in vivo bioluminescence imaging 9 days postinjury. NS/PCs (low: 250,000 cells per mouse; high: 1 million cells per mouse) were grafted into the spinal cord at the lesion epicenter (E) or at rostral and caudal (RC) sites. Phosphate-buffered saline was injected into E as a control. Motor functional recovery was better in each of the transplantation groups (E-Low, E-High, RC-Low, and RC-High) than in the control group. The photon counts of the grafted NS/PCs were similar in each of the four transplantation groups, suggesting that the survival of NS/PCs was fairly uniform when more than a certain threshold number of cells were transplanted. Quantitative RT-PCR analyses demonstrated that brain-derived neurotropic factor expression was higher in the RC segment than in the E segment, and this may underlie why NS/PCs more readily differentiated into neurons than into astrocytes in the RC group. The location of the transplantation site did not affect the area of spared fibers, angiogenesis, or the expression of any other mediators. These findings indicated that the microenvironments of the E and RC sites are able to support NS/PCs transplanted during the subacute phase of SCI similarly. Optimally, a certain threshold number of NS/PCs should be grafted into the E segment to avoid damaging sites adjacent to the lesion during the injection procedure.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xuankang Wang ◽  
Zhihao Zhang ◽  
Zhijie Zhu ◽  
Zhuowen Liang ◽  
Xiaoshuang Zuo ◽  
...  

After spinal cord injury (SCI), reactive astrocytes can be classified into two distinctive phenotypes according to their different functions: neurotoxic (A1) astrocytes and neuroprotective (A2) astrocytes. Our previous studies proved that photobiomodulation (PBM) can promote motor function recovery and improve tissue repair after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM contributes to repair after SCI by regulating the activation of astrocytes. Male rats subjected to clip-compression SCI were treated with PBM for two consecutive weeks, and the results showed that recovery of motor function was improved, the lesion cavity size was reduced, and the number of neurons retained was increased. We determined the time course of A1/A2 astrocyte activation after SCI by RNA sequencing (RNA-Seq) and verified that PBM inhibited A1 astrocyte activation and promoted A2 astrocyte activation at 7 days postinjury (dpi) and 14 dpi. Subsequently, potential signaling pathways related to A1/A2 astrocyte activation were identified by GO function analysis and KEGG pathway analysis and then studied in animal experiments and preliminarily analyzed in cultured astrocytes. Next, we observed that the expression of basic fibroblast growth factor (bFGF) and transforming growth factor-β (TGF-β) was upregulated by PBM and that both factors contributed to the transformation of A1/A2 astrocytes in a dose-dependent manner. Finally, we found that PBM reduced the neurotoxicity of A1 astrocytes to dorsal root ganglion (DRG) neurons. In conclusion, PBM can promote better recovery after SCI, which may be related to the transformation of A1/A2 reactive astrocytes.


2019 ◽  
Vol 6 (3) ◽  
pp. 83-91
Author(s):  
Mohaddeseh Hedayatzadeh ◽  
Hamid Reza Kobravi ◽  
Maryam Tehranipour

Background: Spinal cord injury is one of the diseases that, no specific treatment has yet found despite the variety of works that have done in this field. Different approaches to treat such injuries have investigated today. One of them is invasive intra-spinal interventions such as electrical stimulation. Therefore, in this study, the effect of the protocol for intra-spinal variable and fixed electrical stimulation has been investigated in order to recover from spinal cord injury. Methods: In the study, 18 Wistar male rats randomly divided into Three groups, including intraspinal electrical stimulation (IES), IES with variable pattern of stimulation (VP IES) and a sham group. Animals initially subjected to induced spinal cord injury. After one week, the animal movement was recorded on the treadmill during practice using a camera and angles of the ankle joint were measured using the Tracker software. Then, the obtained data were analyzed by nonlinear evaluations in the phase space. Results: The motion analyses and kinematic analyses were carried out on all groups. According to the achieved results, the gait dynamics of the VP IES group has the most conformity to the gait dynamics of the healthy group. Also, the best quality of the balance preservation observed in the VP IES group. Conclusion: It can be concluded that the IES with variable pattern of stimulation along with exercise therapy has significant gait restorative effects and increases the range of motion in rats with induced spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document