scholarly journals Application of x-ray computed tomography in the evaluation of soil porosity in soil management systems

2014 ◽  
Vol 34 (6) ◽  
pp. 1162-1174 ◽  
Author(s):  
José M. G. Beraldo ◽  
Francisco de A. Scannavino Junior ◽  
Paulo E. Cruvinel

The study aimed to evaluate a methodology to quantify the porosity of the soil using computed tomography in areas under no-tillage, conventional tillage and native forest. Three soil management systems were selected for the study: forest, conventional tillage and no-tillage. In each soil management system, undisturbed soil samples were collected in the surface layer (0.0 to 0.10 m). The tomographic images were obtained using a X-ray microtomography. After obtaining the images, they were processed, and a methodology was evaluated for image conversion into numerical values. The statistical method which provided the greatest accuracy was the percentile method. The methodology used to analyze the tomographic image allowed quantifying the porosity of the soil under different soil management. The method enabled the characterization of soil porosity in a non-evasive and non-destructive way.

2003 ◽  
Vol 60 (3) ◽  
pp. 581-586 ◽  
Author(s):  
Ildegardis Bertol ◽  
Eloy Lemos Mello ◽  
Jean Cláudio Guadagnin ◽  
Almir Luis Vedana Zaparolli ◽  
Marcos Roberto Carrafa

Water erosion causes soil degradation, which is closely related to nutrient losses either in, the soluble form or adsorbed to soil particles, depending mainly on the adopted soil management system. This study was carried out in São José do Cerrito, SC, Brazil, between March 2000 and June 2001. The objective was to quantify available nitrogen, phosphorus, potassium, calcium and magnesium losses in water erosion obtained with simulated rainfall in the following soil management systems: conventional tillage with no-crop (bare soil) (BS), conventional tillage with soybean (CT), reduced tillage with soybean (RT), no tillage with soybean on a desiccated and burned natural pasture (DBNP), and no tillage with soybean on a desiccated natural pasture (DNP). A rotating boom rainfall simulator was used to perform three rainfall tests with constant intensity of 64 mm h-1 and sufficient duration to reach constant runoff rate, on a clayey-loam, well-structured Typic Hapludox, with an average slope of 0.18 m m-1. The first test was carried out five days before soybean emergence and the second and third at 30 and 60 days, respectively. The nutrient concentration in water and total losses of nitrogen, phosphorus, potassium, calcium and magnesium were higher under CT than in the other soil management systems.


2011 ◽  
Vol 35 (5) ◽  
pp. 1641-1649
Author(s):  
João Carlos de Moraes Sá ◽  
Eduardo Garcia Cardoso ◽  
Clever Briedis ◽  
Ademir de Oliveira Ferreira ◽  
Paulo Rogério Borszowskei ◽  
...  

In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.


2000 ◽  
Vol 35 (5) ◽  
pp. 887-894 ◽  
Author(s):  
LENITA JACOB OLIVEIRA ◽  
CLARA BEATRIZ HOFFMANN-CAMPO ◽  
MARIA ALICE GARCIA

To evaluate the effect of soil management systems on population of white grubs, (Phyllophaga cuyabana Moser), and on its damage in soybean, experiments were set up under no-tillage and conventional tillage (one disk plow, and a leveling disk harrow) areas. Primary tillage equipment, used in other soil management systems, such as moldboard plow, disk plow, chisel plow and heavy duty disk harrow were also tested. Fluctuation of P. cuyabana population and the extent of its damage to soybean was similar under no-tillage and conventional tillage systems. Results comparing a range of primary tillage equipment showed that it affected soil insect populations differently, depending on the time during the season in which tillage was executed. Larval mortality could mostly be attributed to their exposure to adverse factors, soon after tillage, than to changes in soil conditions. Reduction of white grub population was more evident in plots managed by heavier equipment, such as the moldboard plow. Soil tillage could be one component within the soil pest management system in soybean, however, its use can not be generalized.


2002 ◽  
Vol 32 (3) ◽  
pp. 401-406 ◽  
Author(s):  
Cimélio Bayer ◽  
Deborah Pinheiro Dick ◽  
Genicelli Mafra Ribeiro ◽  
Klaus Konrad Scheuermann

Land use and soil management may affect both labile and humified soil organic matter (SOM) fractions, but the magnitude of these changes is poorly known in subtropical environments. This study investigated effects of four land use and soil management systems (forest, native pasture, and conventional tillage and no-tillage in a wheat/soybean succession) on (i) total soil organic carbon (SOC) stocks (0 to 250mm depth) and on (ii) carbon (C) stocks in labile (coarse, light) and humified (mineral-associated, humic substances) SOM fractions (0 to 25mm depth), in a Hapludox soil from southern Brazil. In comparison to the adjacent forest site, conventionally tilled soil presented 36% (46.2Mg ha-1) less SOC in the 0 to 250mm depth and a widespread decrease in C stocks in all SOM fractions in the 0 to 25mm depth. The coarse (>53 mum) and light (<1kg dm-3) SOM fractions were the most affected under no-tillage, showing 393% (1.22Mg C ha-1) and 289% (0.55Mg C ha-1) increases, respectively, in relation to conventional tillage. Similar results were observed for mineral-associated SOM and humic substance C pools (34% and 38% increases, respectively) under no-tillage. Compared with labile SOM fraction results, the percentual increments on C stocks in humified fractions were smaller; but in absolute terms this C pool yielded the highest increases (3.06 and 2.95Mg C ha-1, respectively). These results showed that both labile and humified organic matter are better protected under the no-tillage system, and consequently less vulnerable to mineralization. Humified SOM stabilization process involving interactions with variable charge minerals is probably important in maintaining and restoring soil and environmental quality in tropical and subtropical regions.


2010 ◽  
Vol 34 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Alberto Vasconcellos Inda ◽  
José Torrent ◽  
Vidal Barrón ◽  
Cimélio Bayer

No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.


2020 ◽  
Vol 12 (4) ◽  
pp. 194
Author(s):  
Venâncio Rodrigues e Silva ◽  
José Luiz Rodrigues Torres ◽  
Danyllo Denner de Almeida Costa ◽  
Bruna de Souza Silveira ◽  
Dinamar Márcia da Silva Vieira ◽  
...  

The period of implantation of the no-tillage system (NTS) is a fundamental factor to the dimension of the changes that occur to the soil&#39;s physical, chemical and biological attributes. Thus, the objective of this study was to evaluate the soil changes to the physical attributes and correlate the results to the soil organic matter in areas of different long-term soil management. The study was set as a completely randomised design, in a 4 &times; 4 factorial scheme, with four management systems [5 years NTS (NTS5); 17 years NTS (NTS17); conventional tillage system for 20 years (CTS20); native area (NA)], and four soil depths (0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.4 m), with five repetitions. Soil mechanical resistance to root penetration (RP), bulk density (SD), volumetric moisture (VM), macro (Ma), microporosity (Mi) and total porosity (TP), and the aggregation parameters were evaluated. The CTS20, NTS5 and NTS17 presented superior SD in the most superficial soil layers, which was not yet causing resistance to root development. The SD was the only physical attribute that correlated significantly with all the other soil attributes evaluated, indicating the importance of such attribute to evaluate soil quality to crops. The soil physical attributes found in the Cerrado native area followed the sequence of similarities: no-tillage system with 17 years (most similar), with five years and the conventional tillage system (less similar). The changes caused by the anthropic activity in the soil&#39;s physical attributes are more pronounced and perceptible in soil depths up to 0.2 m.


2016 ◽  
Vol 51 (9) ◽  
pp. 1668-1676 ◽  
Author(s):  
Géssica Pereira de Souza ◽  
Cícero Célio de Figueiredo ◽  
Djalma Martinhão Gomes de Sousa

Abstract The objective of this work was to evaluate the effects of soil management systems, cover crops, and phosphate fertilization on soil humic fractions in a long-term experiment. The treatments consisted of conventional tillage and no-tillage with pearl millet (Pennisetum glaucum) or velvet bean (Mucuna aterrima) as cover crops, at two doses of phosphorous: 0 and 100 kg ha-1 P2O5 per year. Soil samples were taken 11 years after the establishment of the experiment and analyzed for soil total organic carbon and carbon content of humic fractions at 0.00-0.05, 0.05-0.10, and 0.10-0.20-m depths. The humic fractions are sensitive to soil management, except free fulvic acid, which was the only one that did not reduce its carbon contents on the surface layer (0.00-0.05 m) with conventional tillage. The main changes occurred on the soil surface layer, in which the no-tillage system with pearl millet as a cover crop provided the highest carbon levels in humic fractions. Long-term phosphate fertilization under no-tillage, with pearl millet as a cover crop, promotes the accumulation of organic carbon in soil humic fractions.


2007 ◽  
Vol 64 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Fernando Luis Engel ◽  
Ildegardis Bertol ◽  
Álvaro Luiz Mafra ◽  
Neroli Pedro Cogo

Soil management influences soil cover by crop residues and plant canopy, affecting water erosion. The objective of this research was to quantify water and soil losses by water erosion under different soil tillage systems applied on a typical aluminic Hapludox soil, in an experiment carried out from April 2003 to May 2004, in the Santa Catarina highland region, Lages, southern Brazil. Simulated rainfall was applied during five soybean cropstages, at the constant intensity of 64.0 mm h-1. Treatments were replicated twice and consisted of: i) conventional tillage on bare soil - control treatment (CTBS), ii) conventional tillage on cultivated soil (CTCS), iii) no-tillage on non tilled soil with burned crop residue (NTRB), iv) no-tillage in non tilled soil with crop residue desiccated (NTRD), and v) no-tillage on four-years interrupted soil tillage with crop residue desiccated - "traditional no tillage" (NTRT). Regardless of soybean cropstages, water losses were the highest for the CTCS than for the untilled soils, while soil losses were considerably higher in the CTCS treatment only until cropstage 3, in cultivated soil treatments. The NTRT was most effective treatment in terms of both water and soil loss reduction. Water infiltration should also be considered, when considering the soil erosion process caused by rainfall and its associated runoff, due to the management systems usually adopted in cultivated fields.


2001 ◽  
Vol 36 (12) ◽  
pp. 1539-1545 ◽  
Author(s):  
Maria Alexandra Reis Valpassos ◽  
Eloiza Gomes Silva Cavalcante ◽  
Ana Maria Rodrigues Cassiolato ◽  
Marlene Cristina Alves

The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.


1990 ◽  
Vol 25 (3) ◽  
pp. 458-462
Author(s):  
J. M. Cheshire ◽  
J. N. All

A nondestructive method of detecting lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), eggs in soil is outlined. Fourth instar larvae were fed a diet containing radioactive phosphorus (4 μ Ci/g), and eggs laid by females that emerged from these larvae contained sufficient radioactivity to expose X-ray film. Fecundity, oviposition rates, and longevity were similar for 32P-labeled adult females and unlabeled adult females. In greenhouse tests using corn planted in simulations of conventional tillage and no-tillage conditions, eggs were autoradiographically detected in soil and on plant tissue.


Sign in / Sign up

Export Citation Format

Share Document