scholarly journals Morphology and morphometry of feline bone marrow-derived mesenchymal stem cells in culture

2014 ◽  
Vol 34 (11) ◽  
pp. 1127-1134 ◽  
Author(s):  
Bruno B. Maciel ◽  
Carmen L.K. Rebelatto ◽  
Paulo R.S. Brofman ◽  
Harald F.V. Brito ◽  
Lia F.L. Patricio ◽  
...  

Mesenchymal stem cells (MSC) are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs). The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes). To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3). The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6)) cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h). The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h).The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h) to 21.29µm (120h). However, at P3, the nucleus length was 26.35µm (24h) and 25.22µm (120h). This information could be important for future application and use of feline BM-MSCs.

2007 ◽  
Vol 67 (4) ◽  
pp. 443-449 ◽  
Author(s):  
J Larghero ◽  
D Farge ◽  
A Braccini ◽  
S Lecourt ◽  
A Scherberich ◽  
...  

Background:Mesenchymal stem cells (MSCs) have a potential immunomodulatory role in autoimmune disease; however, the qualitative properties and haematopoietic support capacity of MSCs derived from patients with autoimmune disease is unclear.Objectives:To further characterise phenotypically and functionally bone marrow (BM)-derived MSCs from patients with systemic sclerosis (SSc).Methods:Key parameters of BM-derived MSC function and phenotype were assessed in 12 patients with SSc and compared with 13 healthy normal controls. The parameters included the ability to: form colony-forming unit fibroblasts (CFU-F), differentiate along the adipogenic and osteogenic lineages, express cell surface antigens defining the MSCs population, support normal haematopoiesis and suppress in vitro lymphocyte proliferation induced by either anti-CD3∊ plus anti-CD28 monoclonal antibodies or the mixed lymphocyte reaction.Results:SSc MSCs were shown to have a similar characteristic phenotype, capacities to form CFU-F and to differentiate along adipogenic and osteogenic lineages as those of healthy donor MSCs. The ability of SSc MSCs to support long-term haematopoiesis was also identical to that of controls. Both healthy donor and SSc BM MSCs reduced the proliferation of autologous and allogeneic peripheral blood mononuclear cells in a cell number dependent fashion.Conclusions:These results show that BM-derived MSCs from patients with SSc under the described culture conditions exhibit the same phenotypic, proliferative, differentiation potential and immunosuppressive properties as their healthy counterparts and could therefore be considered in an autologous setting. Further studies are needed to ensure the quality and safety of large-scale expansion of patient MSCs prior to their potential use in clinical trials.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0031
Author(s):  
Seung Yeol Lee ◽  
Hyang Kim ◽  
Soon-Sun Kwon

Category: Basic Sciences/Biologics Introduction/Purpose: Researchers should consider various potential factors that affect tenogenic differentiation of MSCs. Numerous experimental settings are associated with high cost and time. Response surface methodology (RSM), a component in the design of experiments (DOE), is gaining recognition as a powerful tool in optimizing conditions for the production of industrially important products such as chemicals and enzymes. The purpose of this study was to access the differential effects of transforming growth factor beta 3 (TGF-β3) on the tenogenesis of tonsil-derived mesenchymal stem cells (T-MSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) using RSM. Methods: Bone marrow was collected from four patients (mean age: 79.0±2.2) and mononuclear cells were separated. The tonsillar tissues were collected from four patients (mean age: 7.6±0.6). After isolation of MSCs, they were treated with 5ng/ml and 10ng/ml of TGF-β3 with vehicle control. The full-factorial experimental design was employed to study the effect of tension based on T-MSCs. The design was composed of three levels being coded as -1, 0 and +1 and a total of 18 runs were carried out in duplicates to optimize the level of chosen variables, such as days and amount. A total of 84 trials were utilized and fitted with RSM; they were then used to obtain mathematical prediction models. Results: Exposure of TGF-β3 to T-MSCs and BM-MSCs resulted in an increase in the expression of SCX, TNMD, decorin, collagen I, and tenacin C. Most tenocyte lineage-related factors from T-MSCs and BM-MSCs presented a maximum increase in 2- 3 day treatment. Considering all of tenocyte lineage-related factors that we assessed, the predicted value of the factors was significantly induced at 2.7 ng/mL of TGF-β3 (p < 0.001) on 2.5-day culture (p = 0.001). (Fig A) Considering all of tenocyte lineage-related factors that we assessed, the predicted value of the factors was significantly induced on 2.3-day culture (p = 0.004) regardless of the concentration of TGF-β3. (Fig B) Conclusion: We demonstrated that tenocyte-like cells can be successfully differentiated from T-MSCs and BM-MSCs under TGF- β3 stimulation. This study demonstrated that T-MSCs and BM-MSCs in tenogenic stimulation with TGF-β3 have a similar tenogenic differentiation potential using RSM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Watchareewan Rodprasert ◽  
Sirirat Nantavisai ◽  
Koranis Pathanachai ◽  
Prasit Pavasant ◽  
Thanaphum Osathanon ◽  
...  

AbstractThe trend of regenerative therapy for diabetes in human and veterinary practices has conceptually been proven according to the Edmonton protocol and animal models. Establishing an alternative insulin-producing cell (IPC) resource for further clinical application is a challenging task. This study investigated IPC generation from two practical canine mesenchymal stem cells (cMSCs), canine bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs (cAD-MSCs). The results illustrated that cBM-MSCs and cAD-MSCs contain distinct pancreatic differentiation potential and require the tailor-made induction protocols. The effective generation of cBM-MSC-derived IPCs needs the integration of genetic and microenvironment manipulation using a hanging-drop culture of PDX1-transfected cBM-MSCs under a three-step pancreatic induction protocol. However, this protocol is resource- and time-consuming. Another study on cAD-MSC-derived IPC generation found that IPC colonies could be obtained by a low attachment culture under the three-step induction protocol. Further, Notch signaling inhibition during pancreatic endoderm/progenitor induction yielded IPC colonies through the trend of glucose-responsive C-peptide secretion. Thus, this study showed that IPCs could be obtained from cBM-MSCs and cAD-MSCs through different induction techniques. Also, further signaling manipulation studies should be conducted to maximize the protocol’s efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2009 ◽  
Vol 132 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Erdal Karaoz ◽  
Ayça Aksoy ◽  
Selda Ayhan ◽  
Ayla Eker Sarıboyacı ◽  
Figen Kaymaz ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


Sign in / Sign up

Export Citation Format

Share Document