scholarly journals Paraquat Resistance of Sumatran Fleabane (Conyza sumatrensis)

2019 ◽  
Vol 37 ◽  
Author(s):  
L.H.S. ZOBIOLE ◽  
V.G.C. PEREIRA ◽  
A.J.P. ALBRECHT ◽  
R.S. RUBIN ◽  
F.S. ADEGAS ◽  
...  

ABSTRACT: In Brazil, some populations of Conyza bonariensis and C. canadensis are glyphosate resistant and there are populations of C. sumatrensis (Sumatran fleabane) presenting multiple resistance to both glyphosate and chlorimuron. During the 2014/2015 and 2015/2016 seasons, growers reported failures to control Sumatran fleabane with paraquat. This study investigated the potential of paraquat resistant Sumatran fleabane populations in Paraná state, Brazil. Populations with suspected paraquat resistance were tested in the field in 2016 season. In 2017, seeds from these populations were collected, sown and grown in a greenhouse. Paraquat dose-response curve experiments were performed in Mogi Mirim, SP; Londrina, PR and Palotina, PR using doses of 0, 50, 100, 200, 400, 800, 1,600 and 3,200 g ha-1, following all standard criteria for confirmation of weed resistance cases. Percentage control was assessed at 3, 7, 14, 21 and 28 days after application and data were fitted to a nonlinear, log-logistic model, and dose response curves were generated. The results of this study confirmed significant levels of resistance of Sumatran fleabane biotypes to paraquat with resistance factors between 3,57 to 34,29. Therefore, the first case of C. sumatrensis resistance to paraquat was confirmed in biotypes from the western area of Paraná state, Brazil.

2020 ◽  
Vol 42 ◽  
pp. e42485 ◽  
Author(s):  
Alfredo Junior Paiola Albrecht ◽  
Vinicius Gabriel Caneppele Pereira ◽  
Cristian Natalino Zanfrilli de Souza ◽  
Luiz Henrique Saes Zobiole ◽  
Leandro Paiola Albrecht ◽  
...  

Fleabane (Conyza spp.) is an important weed in grain production systems and is currently one of the most problematic weeds in Brazil. An important factor related to weeds such as fleabane is the characteristic of herbicide-resistant biotypes developed under selection pressure, with multiple resistance previously detected for Conyza spp. Thus, the aim of this study was to demonstrate the multiple resistance of Conyza sumatrensis to the herbicides paraquat, glyphosate, and chlorimuron. From the F2 seeds of biotypes with suspected resistance to paraquat, glyphosate, and chlorimuron, dose-response greenhouse experiments were conducted for the three herbicides. Herbicides were applied when the plants had 6-8 leaves that were at a height of 8 cm. At the end of the evaluations, 28 days after application, multiple resistance to paraquat, glyphosate, and chlorimuron was observed, with resistance factors (RF50) for the control of 7.43, 3.58, and 14.35 and for the reduction of dry mass of 2.65, 2.79, and 11.31, respectively. All the established criteria for demonstrating new cases of weed resistance were met; thus, the first case worldwide of a Conyza species with resistance to herbicides with three different mechanisms of action was confirmed.


2014 ◽  
Vol 32 (2) ◽  
pp. 409-416 ◽  
Author(s):  
G. Santos ◽  
R.S. Oliveira Jr. ◽  
J. Constantin ◽  
A. C. Francischini ◽  
J. B. Osipe

Weed resistance to herbicides has been a major issue in Brazil, mainly due to the inefficiency of the herbicides used in no-till areas and to the high cost of these herbicide treatments. Failures in controlling the weed Conyza have been reported in Western and Northern grain crop areas in Paraná (Brazil). This work aimed to evaluate the potential occurrence of C. sumatrensis biotypes resistant to the herbicides chlorimuron-ethyl and glyphosate. Experiments were carried out under greenhouse conditions with four biotypes (Cascavel-2, Toledo-4, Tupãssi-6, and Assis Chateaubriand-7) possibly resistant to, as well as a population considered susceptible to chlorimuron-ethyl and glyphosate. To obtain dose-response curves, eight herbicide doses of chlorimuron-ethyl (0, 2.5, 5, 10, 20, 40, 80 and 160 g ha-1) and glyphosate (0, 90, 180, 360, 720, 1,440, 2,880 and 5,760 g e.a. ha-1) were applied and weed control and shoot biomass evaluations were made. Results provided evidence that two biotypes (Cascavel-2 and Tupãssi-6) were resistant to glyphosate and four biotypes (Cascavel-2, Toledo-4, Tupãssi-6 and Assis Chateaubriand-7) were resistant to chlorimuronethyl. Multiple resistance to glyphosate and chlorimuron was confirmed for biotypes Cascavel2 and Tupãssi 6. This is the first report on multiple resistance in Conyza sumatrensis, worldwide.


1995 ◽  
Vol 9 (2) ◽  
pp. 218-227 ◽  
Author(s):  
Steven S. Seefeldt ◽  
Jens Erik Jensen ◽  
E. Patrick Fuerst

Dose-response studies are an important tool in weed science. The use of such studies has become especially prevalent following the widespread development of herbicide resistant weeds. In the past, analyses of dose-response studies have utilized various types of transformations and equations which can be validated with several statistical techniques. Most dose-response analysis methods 1) do not accurately describe data at the extremes of doses and 2) do not provide a proper statistical test for the difference(s) between two or more dose-response curves. Consequently, results of dose-response studies are analyzed and reported in a great variety of ways, and comparison of results among various researchers is not possible. The objective of this paper is to review the principles involved in dose-response research and explain the log-logistic analysis of herbicide dose-response relationships. In this paper the log-logistic model is illustrated using a nonlinear computer analysis of experimental data. The log-logistic model is an appropriate method for analyzing most dose-response studies. This model has been used widely and successfully in weed science for many years in Europe. The log-logistic model possesses several clear advantages over other analysis methods and the authors suggest that it should be widely adopted as a standard herbicide dose-response analysis method.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Jéssica F. L. Leal ◽  
Amanda dos S. Souza ◽  
Junior Borella ◽  
André Lucas S. Araujo ◽  
Ana Claudia Langaro ◽  
...  

Abstract Herbicide-resistant weed management is one of the greatest agricultural challenges in crop production. Thus, the quick identification of resistant-herbicide weeds is extremely important for management. This study aimed to evaluate resistance to PSI-inhibitor herbicides (diquat) of Sumatran Fleabane [(Erigeron sumatrensis (Retz.) E.Walker)] and physiological response to paraquat application. The research was conducted with two E. sumatrensis biotypes, one susceptible and the other with multiple resistance to herbicides from five different modes of action (glyphosate, paraquat, diuron, saflufenacil, and 2,4-D). A dose-response assay was carried out to evaluate herbicide resistance to diquat in paraquat-resistant E. sumatrensis biotype. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), hydrogen peroxide (H2O2) content, and chlorophyll a fluorescence were measured in both biotypes after paraquat (400 g ai ha−1) application. The dose-response assay confirmed resistance of E. sumatrensis to diquat with resistance factor levels of 26-fold and 6-fold for LD50 and GR50 values, respectively, compared with the susceptible biotype. The accumulation of H2O2 occurred faster in the paraquat-susceptible biotype than in the resistant ones. Paraquat treatment caused an increase in SOD and APX activity in the susceptible biotype, but antioxidant enzyme activities were unaffected by paraquat in the resistant one at 5 hours after application (HAA). Chlorophyll a fluorescence increased along the first 4 HAA in both resistant and susceptible biotypes. However, at 24 HAA the resistant biotype showed a decline in fluorescence close to untreated plants while susceptible one died, which can be used to diagnose paraquat resistance at 24 HAA. There is confirmed resistance to diquat in a paraquat-resistant E. sumatrensis biotype. The paraquat-resistant biotype does not induce antioxidative enzymes, as a possible mechanism of resistance to paraquat, but shows a fast recovery of photosynthesis and continuous growth when subjected to paraquat, while the paraquat-susceptible biotype does not survive.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1735
Author(s):  
Candelario Palma-Bautista ◽  
Pablo Belluccini ◽  
Valentin Gentiletti ◽  
José G. Vázquez-García ◽  
Hugo E. Cruz-Hipolito ◽  
...  

Carduus acanthoides L. is an invasive species native to Europe and distributed in other parts of the world, including North and South America. In Cordoba, Argentina, control failures of this species have been reported in Roundup Ready (RR) soybean crops where glyphosate and 2,4-D have frequently been applied, although there are no confirmed reports worldwide of resistance to glyphosate and 2,4-D in this species. Dose–response tests showed multiple-resistance to both active principles. The resistant population (R) had LD50 values of 1854.27 and 1577.18 g ae ha−1 (grams of acid equivalent per hectare), while the susceptible (S) population had LD50 values of 195.56 and 111.78 g ae ha−1 for glyphosate and 2,4-D, respectively. Low accumulations of shikimic acid (glyphosate) and ethylene (2,4-D) at different doses in the R population compared to the S population support the results observed in the dose–response curves. No significant differences in leaf retention were observed for glyphosate and 2,4-D in the R and S populations. However, the use of adjuvants increased the retention capacity of herbicides in both populations. Ten alternative herbicides with seven different action mechanisms (MOAs) were evaluated and the most effective active principles were dicamba, bromoxynil, atrazine, tembotrione, flazasulfuron, glufosinate, and paraquat. These findings are the first evidence of glyphosate and 2,4 D resistance in C. acanthoides.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 554 ◽  
Author(s):  
Candelario Palma-Bautista ◽  
Verónica Hoyos ◽  
Guido Plaza ◽  
José G. Vázquez-García ◽  
Jesús Rosario ◽  
...  

Two Parthenium hysterophorus populations resistant (R) and susceptible (S) harvested in banana crop from the Dominican Republic were studied. All S plants died when the herbicides were applied at field dose, except with paraquat. For the R population, the order of plant survival was as follows: glyphosate and paraquat > flazasulfuron > glufosinate > fomesafen > 2,4-D. The resistance factors obtained in the dose–response assays showed a high resistance to glyphosate, flazasulfuron, and fomesafen, medium resistance to glufosinate and 2,4-D, and a natural tolerance to paraquat (resistance factor (RF) = 1.0). The I50 values obtained in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), acetolactate synthase (ALS), and glutamine synthetase (GS) activity studies with glyphosate, flazasulfuron, and glufosinate, respectively, were greater in R than in S. The effect of fomesafen was measured by the Proto IX levels, obtaining five times more Proto IX in the S than in the R population. The resistance to 2,4-D in the R was determined by the lower accumulation of ethylene compared to the S population. The studies with 14C-paraquat conclude that the lower absorption and translocation in both the R and S populations would explain the natural tolerance of P. hysterophorus. This is the first case of multiple resistance to herbicides with different mechanisms of action confirmed in P. hysterophorus.


2012 ◽  
Vol 30 (2) ◽  
pp. 401-406 ◽  
Author(s):  
D.J. Soares ◽  
W.S. Oliveira ◽  
R.F. López-Ovejero ◽  
P.J Christoffoleti

Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.


Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 690-698 ◽  
Author(s):  
Pablo Tomas Fernandez-Moreno ◽  
Antonia Maria Rojano-Delgado ◽  
Julio Menendez ◽  
Rafael De Prado

Five rigid ryegrass populations suspected of being resistant to both glyphosate and oxyfluorfen were collected in southern Spain and tested under laboratory-controlled conditions. Four populations (Depuradora, Condado, AlamoRasilla, and Portichuelo) were treated with glyphosate for at least 15 consecutive years, and treatments during the last 5 yr were mixed with oxyfluorfen. The fifth population (4alamos) followed the same glyphosate treatment, although oxyfluorfen was never used to control it. Dose–response assays confirmed glyphosate resistance in all populations, with resistance indexes ranging from 11.7 to 37.5 (GR90). Shikimate accumulation assays consistently supported these data, as the most glyphosate-resistant populations (Depuradora and Condado) displayed the lowest shikimate levels. Surprisingly, four populations (Depuradora, Condado, AlamoRasilla, and Portichuelo) displayed 7.93- to 70.18-fold more resistance (GR90) to oxyfluorfen, despite limited selection pressure, showing a similar resistance pattern as that for glyphosate. The 4alamos population displayed oxyfluorfen GR90values that were similar to those observed in susceptible plants; however, this population was significantly more resistant in terms of plant survival (LD90). Protoporphyrin IX accumulation assays supported the results of dose–response assays, in that the most oxyfluorfen-resistant populations accumulated less protoporphyrin IX. Although more studies are needed, it seems that these five glyphosate-resistant weed populations display a natural tendency to easily develop resistance to oxyfluorfen, with the populations that have higher resistance to glyphosate also having higher resistance to oxyfluorfen.


Author(s):  
Candelario Palma-Bautista ◽  
Behroz Khalil Tahmasebi ◽  
Pablo Tomás Fernández-Moreno ◽  
Antonia María Rojano-Delgado ◽  
Ricardo Alcántara de la Cruz ◽  
...  

Conyza canadensis is a species invading large agricultural areas throughout the world, mainly to its ability to evolve herbicide resistance. Specifically, in Hungary, extensive areas have been infested by this species due to the difficulty in controlling it with glyphosate. To corroborate this fact as resistance and not as an incorrect herbicide application, eight suspicious glyphosate-resistant C. canadensis populations from different Hungarian regions were studied. In dose-response assays with glyphosate, the LD50 and GR50 values indicated that populations 1 to 5 were resistant to this herbicide (H-5 population the most resistant). Besides, the shikimic acid accumulation tests corroborated the results observed in the dose-response assays. 11 alternative herbicides from 6 different mode of action (MOA) were applied at field doses as control alternatives on populations H-5 and H-6 (both in the same regions). The H-5 population showed an unexpected resistance to flazasulfuron (ALS-inhibitor). The ALS enzyme activity studies indicated that the I50 for H-5 was 63.3 fold higher compared to its correspondent susceptible population (H-6). Therefore, the H-5 population exhibited multiple-resistance to flazasulfuron and glyphosate, being the first case reported in Europe for this two MOA. For that reason, the other herbicides with different MOA have to be tested here.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 582
Author(s):  
Alfredo Junior Paiola Albrecht ◽  
Guilherme Thomazini ◽  
Leandro Paiola Albrecht ◽  
Afonso Pires ◽  
Juliano Bortoluzzi Lorenzetti ◽  
...  

Conyza sumatrensis was reported to be associated with 20 cases of herbicide resistance worldwide, with a recent report of multiple drug resistance to paraquat, glyphosate, and chlorimuron in Brazil. In Paraguay, there were no reports of cases of resistance for this species; however, in 2017, researchers began identifying biotypes with resistance to paraquat, glyphosate, and chlorimuron, which is the focus of the present study. The goal of this study was to investigate the case of multiple resistance of C. sumatrensis to paraquat, glyphosate, and chlorimuron and to monitor the resistant biotypes in the departments of Canindeyú and Alto Paraná. Seeds were collected from sites where plants survived after herbicide application in the 2017/18 and 2018/19 seasons. After screening, biotypes were selected for the construction of dose–response curves. A resistance factor (RF) of 6.79 was observed for 50% control (C50) and 3.92 for 50% growth reduction (GR50) for the application of paraquat. An RF of 12.32 was found for C50 and 4.15 for GR50 for the application of glyphosate. For the application of chlorimuron, an RF of 11.32 was found for C50 and 10.96 for GR50. This confirms the multiple resistance of the C. sumatrensis biotype to paraquat, glyphosate, and chlorimuron. Population monitoring indicated the presence of C. sumatrensis with multiple resistance in departments of Canindeyú and Alto Paraná, Paraguay.


Sign in / Sign up

Export Citation Format

Share Document