scholarly journals Comparison of neutron moisture gauges with nonnuclear methods to measure field soil water status

1992 ◽  
Vol 49 (spe) ◽  
pp. 111-121 ◽  
Author(s):  
C. Kirda ◽  
K. Reichardt

The neutron moisture gauge is compared with the gravimetric-core soil sampling technique, tensiometers and resistance blocks in relation to stability, Held variability, spatial dependence and number of samples needed at a given level of significance. The variance of field water content measurements with neutron moisture gauges is lower than that of the gravimetric sampling, which therefore requires 2 to 6 times as many samples as the number of measuring sites of the gauges to attain the same level of significance. The space dependence of the measurements made with the subsurface gauge varied depending on the average field soil water content. No space dependence was evident when the water content was lower than 0.2 cm³.cm-3 (50% saturation). Measurements with the tensiometers and resistance blocks manifested no spatial dependence and therefore randomly selected measuring sites can be adapted to Held research work where these methods are to be utilized. Soil water content measurements estimated with neutron moisture gauges showed well defined temporal stability (i.e., the lowest, average and the highest soil water content measurements occur at the same field site) which implies that soil water status of an entire field can be assessed with measurements limited to few locations. Measurements with both tensiometers and the resistance blocks are time variant (i.e., the site giving field average water content changes spatially in time) owing to their relatively smaller measuring domains (i.e., scale of the area which can be represented by a single measurement) as compared to neutron gauges. Therefore it is not possible to define the measuring sites of the tensiometers and resistance blocks as to assess soil water status of the entire field, as it could be done with the neutron gauge.

2021 ◽  
Vol 3 (4) ◽  
pp. 942-953
Author(s):  
Matheus Gabriel Acorsi ◽  
Leandro Maria Gimenez

Restrictions on soil water supply can dramatically reduce crop yields by affecting the growth and development of plants. For this reason, screening tools that can detect crop water stress early have been long investigated, with canopy temperature (CT) being widely used for this purpose. In this study, we investigated the relationship between canopy temperature retrieved from unmanned aerial vehicles (UAV) based thermal imagery with soil and plant attributes, using a rainfed maize field as the area of study. The flight mission was conducted during the late vegetative stage and at solar noon, when a considerable soil water deficit was detected according to the soil water balance model used. While the images were being taken, soil sampling was conducted to determine the soil water content across the field. The sampling results demonstrated the spatial variability of soil water status, with soil volumetric water content (SVWC) presenting 10.4% of variation and values close to the permanent wilting point (PWP), reflecting CT readings that ranged from 32.8 to 40.6 °C among the sampling locations. Although CT correlated well with many of the physical attributes of soil that are related to water dynamics, the simple linear regression between CT and soil water content variables yielded coefficients of determination (R2) = 0.42, indicating that CT alone might not be sufficient to predict soil water status. Nonetheless, when CT was combined with some soil physical attributes in a multiple linear regression, the prediction capacity was significantly increased, achieving an R2 value = 0.88. This result indicates the potential use of CT along with certain soil physical variables to predict crop water status, making it a useful tool for studies exploring the spatial variability of in-season drought stress.


1986 ◽  
Vol 13 (4) ◽  
pp. 459 ◽  
Author(s):  
T Gollan ◽  
RA Richards ◽  
HM Rawson ◽  
JB Passioura ◽  
DA Johnson ◽  
...  

Wheat and sunflower were grown in pots that could be enclosed in a pressure chamber, with the shoot in a cuvette. Applying an appropriate pneumatic pressure to the roots enabled the leaves to be kept fully turgid despite any drying of the soil. The leaf conductance of plants was followed while the soil dried. Remarkably, this conductance fell with falling soil water content no matter whether the leaves were kept fully turgid or not. It is concluded that the roots sensed the drying of the soil and sent a message to the leaves which induced stomatal closure.


2010 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Dwi Putro Tejo Baskoro

A study about the effect of humic substance and green manure on soil physical characteristics and cassava production was conducted on a Sandy loam soil in Sukadana-East Lampung. Humic substance was obtained from Proper Humic, whereas green manure was obtained from crop residue and weed surrounding the experimental site. Humic substance applied was 15 liters ha-1 and green manure applied was 2 tons ha-1. The result of the experiment indicated that in general, humic substance and green manure applied had no significant effect on soil physical characteristics. However, there was a tendency that water content at field capacity (pF 2.54) and water available capacity increased as humic substance and green manure were applied. Similar tendency was also observed for water retained in soil where field soil water content at 7 consecutive no-raindays was slightly higher at soil with humic substance and green manure. With the application of humic substance and green manure, soil could hold water in a longer time. The effect of green manure on field soil water content was, however, slightly better than that of humic substance. Nevertheless, application of humic substance 15 l ha-1 increased significantly cassava growth and production and the effect was better than those from green manure with the dosage of 2 ton ha-1. Key words: cassava production, humic substance, water retention


2017 ◽  
pp. 143-148
Author(s):  
Mahama Salifu

Maize (Zea mays L.) is the most important consuming cereal crop in the world after rice and wheat. This requires an understanding of various management practices as well as conditions that affect maize crop performance. Water deficit stress during crop production is one of the most serious threats to crop production in most parts of the world and drought stress or water deficit is an inevitable and recurring feature of global agriculture and it is against this background that field study of crops response to water deficit is very important to crop producer and researchers to maximize yield and improve crop production in this era of unpredicted climatic changes the world over.A pot experiment was carried out to determine the effects of water deficit on growth and yield formation of maize. Two maize cultivars were used Xundan20 and Zhongdan5485. Three levels of soil water content were used in two stages of water control levels at two stages of the maize plant development1. The JOINTING STAGE: A. CONTROL (CK) soil water content: from 70% to 80% of soil water holding capacity at the field, soil water content: from 55% to 65% of soil water holding capacity at the field, soil water content: from 40% to 50% of the Soil water holding capacity at the field.2. The BIG FLARE PERIOD: A. CONTROL (CK) soil water content: from 75% to 85% of soil water holding capacity at the field, soil water content: from 58% to 68% of soil water holding capacity at the field, soil water content: from 45% to 55% of the soil water holding capacity at the field.This research mainly studied the effects of water deficit on physiological, morphology and the agronomical characteristics of the maize plant at the different water stress levels.The importance of these results in this experiment will enable plant producers to focus and have a fair idea as to which stage of the maize plant’s development that much attention must be given to in terms of water supply.


2021 ◽  
Author(s):  
Ana belén Mira-García ◽  
Juan Vera ◽  
Wenceslao Conejero ◽  
Mª Carmen Ruiz-Sánchez

<p>Lime tree growing area is increasing in Mediterranean temperate regions. In these areas, climate change scenario is expected to raise air temperature and water shortages. Such scenario requires new approaches to implement a precision irrigation in agriculture. In order to use water more efficiently, it becomes necessary to accurately determining the crop water needs, which are estimated by crop evapotranspiration computations (ETc). In this study the ETc of young lime trees grown under Mediterranean conditions were determined using the soil water balance method. For this purpose, two-year old lime trees (Citrus latifolia Tan., cv. Bearss) grafted on C. macrophylla rootstock were cultivated in pot-lysimeters, equipped with capacitance and granular matric sensors for real-time monitoring of the soil water status. Irrigation, drainage, and pot weight were also monitored continuously. All measurements were integrated into a telemetry platform. Agro-meteorological variables, plant water status (stem (Ψ<sub>stem</sub>) and leaf (Ψ<sub>leaf</sub>) water potentials), and leaf gas exchange parameters (stomatal conductance (g<sub>s</sub>) and net photosynthesis (P<sub>n</sub>)) were measured. Along the experiment, an automated irrigation protocol based on volumetric soil water content (θ<sub>v</sub>) threshold values were programmed, guaranteeing an adequate lime tree water status. Irrigation dose was calculated based on a feed-back strategy maintaining θ<sub>v </sub>within 30% management allowed depletion.</p><p>During the experimental period, the lime trees were well irrigated as revealed midday Ψ<sub>stem </sub>values that were maintained above -0.8 MPa. Also, the mean seasonal values of ≈ 7 µmol m<sup>−2</sup> s<sup>−1</sup> and 80 mmol m<sup>−2</sup> s<sup>−1</sup>, for P<sub>n</sub> and g<sub>s</sub>, respectively, indicated optimal gas exchange values. The computed water balance parameters yielded values for the crop evapotranspiration from 0.25<sup></sup>to 2.56 mm day<sup>-1</sup>, in winter and summer months, respectively, with maximum values in July when evaporative demand conditions were the highest. This soil water balance was daily validated by the pot weight balance through the year.</p><p>In conclusion, the automated irrigation of young potted lime trees, using soil water content as a control system variable, has ensured an adequate lime tree water status. A simple, robust weighing/drainage lysimeter, with real-time monitoring of the soil water balance parameters, has been proved practical and economical tool for crop evapotranspiration measurements.</p><p>Acknowledgments: This work was funded by Spanish Agencia Estatal de Investigación (PID2019-106226RB-C2-1/AEI/10.13039/501100011033) and Fundación Séneca, Región de Murcia (19903/GERM/15) projects.</p>


1972 ◽  
Vol 79 (1) ◽  
pp. 75-81 ◽  
Author(s):  
F. A. Langton

SUMMARYPotato varieties were grown in the field in soil uniformly infected with Streptomyces scabies. In 1969 tubers were severely and evenly infected but in 1971 infection was slight and not uniform. Agreement of varietal ranking with agricultural experience was good in 1969 but poor in 1971.In 1971, plots protected from rainfall after planting were dry enough at the start of tubering for severe infection; covering the plots for a further 6 weeks followed by irrigation to field capacity resulted in good yields of evenly and severely scabbed tubers. Irrigation during this period suppressed scabbing. The results were easily interpreted in relation to fluctuations in soil-water content measured by a neutron moisture-meter.The efficiency of using only one site and the need to reduce variability in scab screening tests are discussed.


Sign in / Sign up

Export Citation Format

Share Document