scholarly journals Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize

2004 ◽  
Vol 61 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Cynthia Torres de Toledo Machado ◽  
Ângela Maria Cangiani Furlani

Interspecific and intraspecific differences in the efficiency of utilization of soil phosphorus (P) are explained, in part, by plant morphological and physiological variations, which characterize the plant for nutrient acquisition. As part of a study on maize genotypes characterization for P-uptake and use efficiency, kinetic parameters of P uptake and root morphological characters were evaluated for six local and improved maize varieties, grown in nutrient solution. The kinetic parameters related to P influx were: maximal transport rate (Vmax), the Michaelis-Menten constant (Km), and the external concentration when net uptake is zero (Cmin). Measured root morphological characters were: root length, radius, and surface area. Shoot and root dry matter yield and the P content in these parts were also determined. Diferences among varieties were observed in the kinetic parameters Vmax and Km, root length and in root/shoot dry matter ratio. Lower Km values were better indicatives of P uptake ability of the varietes and were significantly correlated to higher dry matter production and P-efficiency index.

1997 ◽  
Vol 24 (1) ◽  
pp. 1-6 ◽  
Author(s):  
K. R. Krishna

Abstract Cultivars of a crop can differ genetically with respect to their uptake, translocation, accumulation, and use of phosphorus. The objective of this paper was to evaluate genetic variation for P uptake and utilization among peanut (Arachis hypogaea L.) genotypes. Several traits contribute to the total P efficiency of the genotype, including root length, rate of P uptake per unit root length, leaf and pod characters such as P accumulation, and dry matter/yield produced per unit P absorbed [i.e., P efficiency ratio (PER)]. Peanut genotypes with increased P uptake and higher PER were identified. Some genotypes sustained higher PER at both low and high soil P availabilities.


2004 ◽  
Vol 61 (2) ◽  
pp. 216-223 ◽  
Author(s):  
Cynthia Torres de Toledo Machado ◽  
Ângela Maria Cangiani Furlani

The activity of the enzyme phosphatase (P-ase) is a physiological characteristic related to plant efficiency in relation to P acquisition and utilization, and is genetically variable. As part of a study on maize genotype characterization in relation to phosphorus (P) uptake and utilization efficiency, two experiments were set up to measure phosphatase (P-ase) activity in intact roots of six local and improved maize varieties and two sub-populations. Plants were grown at one P level in nutrient solution (4 mg L-1) and the P-ase activity assay was run using 17-day-old plants for varieties and 24-day-old plants for subpopulations. Shoot and root dry matter yields and P concentrations and contents in plant parts were determined, as well as P-efficiency indexes. Root P-ase activity differed among varieties, and highest enzimatic activities were observed in two local varieties -'Catetão' and 'Caiano' -and three improved varieties -'Sol da Manhã', 'Nitrodente' and 'BR 106'. 'Carioca', a local variety, had the lowest activity. Between subpopulations, 'ND2', with low yielding and poorly P-efficient plants, presented higher root P-ase activity as compared to 'ND10', high yielding and highly P-efficient plants. In general, subpopulations presented lower P-ase activities as compared to varieties. Positive and/or negative correlations were obtained between P-ase activity and P-efficiency characteristics, specific for the genotypes, not allowing inference on a general and clear association between root-secreted phosphatase and dry matter production or P acquisition. Genotypic variability must be known and considered before using P-ase activity as an indicator of P nutritional status, or P tolerance, adaptation and efficiency under low P conditions.


2002 ◽  
Vol 59 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Ângela Maria Cangiani Furlani ◽  
Pedro Roberto Furlani ◽  
Roberto Tetsuo Tanaka ◽  
Hipólito Assunção Antonio Mascarenhas ◽  
Margarida das Dores Paes Delgado

Plant efficiency for phosphorus uptake and utilization may contribute to improve crop yield potential in situations of low P availability. Twenty nine soybean [Glycine max (L.) Merr.] cultivars were evaluated and classified in relation to the response to phosphorus (P) levels in nutrient solution. P uptake and use efficiency were estimated by the variables: shoot and root dry matter (DM) yield, P-concentrations and contents in plant parts and P-efficiency index (EI). The experiment was conducted in a greenhouse, during 1999, at Campinas, State of São Paulo, Brazil. The experimental design consisted of randomized complete blocks, arranged in split-plots, with three replications. The main plots were the P levels in the nutrient solution (64.5; 129; 258 and 516 mmol L-1), and the subplots were the twenty-nine soybean cultivars, grouped according days to maturity. The plants were harvested at flowering, separated in shoots and roots for dry matter determination and chemical analysis. The analyses of variance indicated differences in plant responses to P-levels and cultivars. Multivariate analysis showed high correlation among the variables shoot-DM, total-DM and shoot P-concentration and P-efficiency index (EI). Cultivars were classified in efficient-responsive (ER)-- 'IAC-1', 'IAC-2', 'IAC-4', 'IAC-5', 'IAC-6', 'IAC-9', 'Sta. Rosa' and 'UFV-1'; efficient-non-responsive (ENR) -- 'IAC-7', 'IAC-11', 'IAC-15', 'S. Carlos' and 'Cristalina'; inefficient-responsive (IR) -- 'IAC-8', 'IAC-10', 'IAC-14', 'Bossier' and 'Foscarin'; and inefficient-non-responsive (INR) -- 'IAC-12', 'IAC-13', 'IAC-16', 'IAC-17', 'IAC-18', 'IAC-19', 'IAC-20', 'IAC-22', 'Paraná', 'IAS-5' and 'BR-4'. The efficient-responsive soybean cultivars showed the highest values for shoot and total DM and EI, and the lowest shoot P-concentrations.


1963 ◽  
Vol 43 (3) ◽  
pp. 355-360 ◽  
Author(s):  
M. Levesque ◽  
J. W. Ketcheson

Du Puits and Ladak varieties of alfalfa were grown for 10 weeks in the greenhouse on soil-sand media controlled at temperatures of 10°, 18°, and 26 °C. P32-tagged superphosphate was applied at rates of 10 and 80 p.p.m. phosphorus, respectively. Dry matter yields and phosphorus content of the tissue was determined at the end of the growth period. Increasing soil temperature from 10° to 26 °C. caused corresponding increases in total phosphorus uptake as a result of an increase in dry matter yields as well as an increase in the percentage of phosphorus in the plant tissue. Ladak exhibited the higher yield potential although Du Puits was less affected by low soil temperature conditions and appeared capable of making better use of soil phosphorus. With the higher phosphorus application, the root-top ratio for Du Puits was greater than that for Ladak, and the maximum value for this ratio occurred at 18 °C. for each variety. P32 activity measured in the tissue indicated that soil temperature was critical in terms of phosphorus fertilization in the 4- and 6-week stages of growth.


2006 ◽  
Vol 33 (2) ◽  
pp. 207 ◽  
Author(s):  
Hong Liao ◽  
Xiaolong Yan ◽  
Gerardo Rubio ◽  
Steve E. Beebe ◽  
Matthew W. Blair ◽  
...  

Root gravitropism determines the relative distribution of plant roots in different soil layers, and therefore, may influence the acquisition of shallow soil resources such as phosphorus (P). Growth pouch and field studies were conducted to evaluate root gravitropism of common bean (Phaseolus vulgaris L.) in response to P deficiency and to detect quantitative trait loci (QTL) associated with this trait. A deep-rooted genotype, DOR364, was crossed with a shallow-rooted genotype, G19833, to obtain 86 F5.7 recombinant inbred lines (RILs). Root gravitropic traits were measured as basal root growth angle (BRGA), shallow basal root length (SBRL, basal root length in the top 0-3 cm of soil) and relative shallow basal root length (RSBRL, percentage of basal root length in the top 0-3 cm of soil relative to total basal root length). Large genetic variability for these traits was found in the parents and RILs, with BRGA ranging from -18.73 to 56.69� and SBRL ranging from 0.42 to 2.63 m per plant. The parents and six RILs with contrasting root gravitropism were further evaluated in the field, where root shallowness was significantly correlated with plant growth and P uptake. QTL were detected by single point analysis (SPA), interval mapping (IM) and composite interval mapping (CIM) techniques with a genetic map for the DOR364 � G19833 population consisting of 236 molecular markers. The IM�/�CIM QTL were detected among the 11 linkage groups of common bean, with 16 QTL controlling the above root traits and six QTL controlling P acquisition efficiency (PAE) in the field study. At least three of the root trait QTL were associated with QTL for PAE, suggesting that root gravitropic traits are associated with PAE and that QTL for these traits can be used to facilitate selection and breeding for higher P efficiency in common bean and other crops.


2019 ◽  
Vol 70 (12) ◽  
pp. 1097
Author(s):  
M. R. McCaskill ◽  
M. L. Mitchell ◽  
R. Zollinger ◽  
R. D. Armstrong ◽  
D. Partington

The soil phosphorus (P) requirements of 18 species that included native grasses and naturalised legumes were compared with the predominant sown species (Trifolium subterraneum, Lolium perenne and Phalaris aquatica) in a series of glasshouse and field experiments based on the Long-term Phosphate Experiment at Hamilton, Victoria. The native grasses Austrostipa scabra and Rytidosperma caespitosum had the lowest external P requirements, as measured by the Olsen P at which 90% of maximal dry matter (DM) production was obtained, but were of low nutrient value as livestock feed. The naturalised legume Lotus corniculatus had the lowest external P requirement of the legumes, but had low DM production. The highest legume DM production under low-P conditions in the field and one glasshouse experiment was obtained for T. subterraneum. This was attributed to its large seed, which enables rapid initial growth and thus captures light and nutrient resources early in the growing season. However, it forms a relatively low proportion of the pasture sward in low-P soil under grazed mixed pasture conditions in the field. This was attributed to its relatively high nutritive value, which leads to it being preferentially grazed, leaving species that are either less palatable or less accessible to grazing livestock. This work suggests that, in low-P environments, there is a much stronger selection pressure favouring low relative palatability over P efficiency. In conclusion, to maintain desirable species in temperate low-input pastures, sufficient P needs to be applied to maintain fertility above a threshold at which the less-palatable species begin to invade.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Deshan Zhang ◽  
Hongbo Li ◽  
Zishi Fu ◽  
Shumei Cai ◽  
Sixin Xu ◽  
...  

Abstract Neighbouring plants can affect plant growth through altering root morphological and physiological traits, but how exactly root systems respond to neighbouring plants with varied density, determining nutrient uptake and shoot growth is poorly understood. In a pot-based experiment, rapeseed was grown alone (single rapeseed), or mixed with 3, 6, or 15 Chinese milk vetch plants. As controls, monocropped Chinese milk vetch was grown at the same planting density, 3, 6, or 15 plants per pot. Root interaction between rapeseed and Chinese milk vetch facilitated phosphorus (P) uptake in rapeseed grown with 3 plants of Chinese milk vetch. As the planting density of Chinese milk vetch in mixture increased, there was a decrease in citrate concentration and acid phosphatase activity but an increase in the total root length of Chinese milk vetch per pot, resulting in decreases in rapeseed root biomass, total root length and P uptake when rapeseed was grown with 6 or 15 Chinese milk vetch plants relative to rapeseed grown with 3 plants. These results demonstrate that the enhanced nutrient utilization induced by root interaction at low planting densities was eliminated by the increased planting density of the legume species in rapeseed/Chinese milk vetch mixed cropping system, suggesting that root/rhizosphere management through optimizing legume planting density is important for improving crop productivity and nutrient-use efficiency.


1987 ◽  
Vol 38 (6) ◽  
pp. 1033 ◽  
Author(s):  
JS Yeates ◽  
DG Allen

The effectiveness of three finely ground rock phosphates (PRs) was compared with ordinary superphosphate (OSP) for subterranean clover growth and for increasing soil bicarbonate-extractable P levels over two successive 8-week periods on a very acid clay-loam (pH (0.01 M CaCl2) 4.3) in a glasshouse experiment. All PR sources were poorly effective compared to OSP. Maximum dry matter and P uptake of each PR source was less than that of OSP at each harvest. Relative to surface application, mixing throughout the soil reduced the effectiveness of OSP for dry matter and P uptake, but had little effect on the PR sources. Relative to OSP, the effectiveness of PR sources did not increase at the second harvest. Bicarbonate-extractable P levels for soil-incorporated Island PR plateaued below the highest rate applied. Phosphorus uptake by the herbage at harvests 1 and 2 was not well related to soil bicarbonateextractable P levels at harvest 1, and source dependency was indicated. Soil pH was markedly increased by each of PR sources at application rates within the rates required to reach maximum dry matter and P yield. Increased soil pH at high PR applications is likely to have reduced PR dissolution, and contributed to low agronomic effectiveness. Dry matter yield at both harvests was dependent on P concentration in the tops, regardless of the P source or method of P application. A higher soil buffering capacity for pH, P or Ca than was present in this soil seems necessary for sufficient PR dissolution to achieve the same agronomic effectiveness as OSP.


Author(s):  
Christian W. Kuppe ◽  
Guy J D Kirk ◽  
Matthias Wissuwa ◽  
Johannes A Postma

Upland rice (Oryza sativa) is adapted to strongly phosphorus (P) sorbing soils. The mechanisms underlying P acquisition, however, are not well understood, and models typically underestimate uptake. This complicates root ideotype development and trait-based selection for further improvement. We present a novel model, which correctly simulates the P uptake by a P-efficient rice genotype measured over 48 days of growth. The model represents root morphology at the local rhizosphere scale, including root hairs and fine S-type laterals. It simulates fast-and slowly reacting soil P and the P-solubilizing effect of root-induced pH changes in the soil. Simulations predict that the zone of pH changes and P solubilization around a root spreads further into the soil than the zone of P depletion. A root needs to place laterals outside its depletion-but inside its solubilization zone to maximize P uptake. S-type laterals, which are short but hairy, appear to be the key root structures to achieve that. Thus, thicker roots facilitate the P uptake by fine lateral roots. Uptake can be enhanced through longer root hairs and greater root length density but was less sensitive to total root length and root class proportions.


2016 ◽  
Vol 25 (3) ◽  
Author(s):  
Ana Maria Garcia-Lopez ◽  
Antonio Delgado

In this work, we examined the effects of Bacillus subtilis strain QST713 by assessing plant P uptake from variably P compound .The experiment performed involved three factors: (i) P source [KH2PO4 at 100 mg kg–1, and phosphate rock (PR) at 100 or 200 mg kg–1]; (ii) plant inoculation with QST713 (inoculated and non-inoculated); and (iii) Fe oxide (ferrihydrite) in the growth medium (0 or 300 mg kg–1 concentration of citrate–ascorbate-extractable Fe). Ferrihydrite decreased dry matter yield in plants by more than 50 %. Inoculation with QST713 increased plant growth, and total accumulation of P and P uptake in plants. Overall, QST713 increased P uptake by 40 %, the effect being independent of the presence of ferrihydrite and P source. The increased P uptake observed can be ascribed to increased solubilization of P and to increased root growth. Therefore, QST713 improves P nutrition in plants grown on media with a high P adsorption capacity irrespective of the solubility of the P compound.


Sign in / Sign up

Export Citation Format

Share Document