scholarly journals Specific residue: application of orthogonal contrasts when heteroscedasticity is present

2010 ◽  
Vol 67 (1) ◽  
pp. 117-125
Author(s):  
Maria Cristina Stolf Nogueira

When experimental data are submitted to analysis of variance, the assumption of data homoscedasticity (variance homogeneity among treatments), associated to the adopted mathematical model must be satisfied. This verification is necessary to ensure the correct test for the analysis. In some cases, when data homoscedascity is not observed, errors may invalidate the analysis. An alternative to overcome this difficulty is the application of the specific residue analysis, which consists of the decomposition of the residual sum of squares in its components, in order to adequately test the correspondent orthogonal contrasts of interest between treatment means. Although the decomposition of the residual sum of squares is a seldom used procedure, it is useful for a better understanding of the residual mean square nature and to validate the tests to be applied. The objective of this review is to illustrate the specific residue application as a valid and adequate alternative to analyze data from experiments following completely randomized and randomized complete block designs in the presence of heteroscedasticity.

1984 ◽  
Vol 246 (1) ◽  
pp. E52-E61
Author(s):  
Y. Yamasaki ◽  
J. Tiran ◽  
A. M. Albisser

We have utilized a previously described mathematical model to study glucose disposal in fed, conscious, ambulatory, diabetic dogs. The model was applied to estimate the daily disposition of ingested glucose in the periphery, liver, and urine following a regular mixed meal containing 130 g of carbohydrate. Experimental data was obtained from 11 pancreatectomized animals. Both the portal and peripheral routes were used for intravenous insulin infusion and the daily profiles of peripheral plasma glucose and insulin concentrations measured. Total calories in mixed meals derived from carbohydrates (37%), fat (30%), and protein (30%). When judged according to the root-mean-square differences, agreement was excellent between model-predicted and experimentally observed glucose as well as insulin concentrations. This agreement occurred whether or not, in addition to basal insulin, meal insulin was also given. Using the model, we then predicted in detail the rates of glucose uptake in peripheral tissue, liver, and kidneys. With portally infused insulin resulting in diurnal glycemic normalization, the net daily hepatic glucose balance was physiological, being close to zero. Remarkably, with peripheral insulin infusions there was an unphysiological net negative hepatic glucose balance of 10 g/day.


1984 ◽  
Vol 106 (1) ◽  
pp. 55-61 ◽  
Author(s):  
V. K. Jain ◽  
Vinod Kumar Jain ◽  
P. C. Pandey

Little information is available about the corner shape and size produced in electrochemical drilling of blind holes. On this account prediction of the complete anode shape analytically, in ECD, is not possible. This paper reports the experimental findings regarding the shape and size of the corners copied, in the anode during electrochemical drilling of blind holes using a tool of specified geometry. An equation evolved by regression analysis of experimental data has been suggested for this purpose. With a view to improve results, an equation based on dimensional analysis has also been presented. Finally, a comprehensive mathematical model accounting for the independent, higher order, and the interaction effects of different important process parameters on the yield (anode radius) has been proposed and its adequacy has been tested by the analysis of variance and accuracy against experimental data.


2017 ◽  
Vol 54 (2) ◽  
pp. 91-122
Author(s):  
Tadeusz Calinski ◽  
Idzi Siatkowski

Abstract Summary The main estimation and hypothesis testing results are presented for experiments conducted in proper block designs. It is shown that, under appropriate randomization, these experiments have the convenient orthogonal block structure. Because of this, the analysis of experimental data can be performed in a comparatively simple way. Certain simplifying procedures are introduced. The main advantage of the presented methodology concerns the analysis of variance and related hypothesis testing procedures. Under the adopted approach one can perform them directly, not by combining results from intra-block and inter-block analyses. Application of the theory is illustrated by three examples of real experiments in proper block designs. This is the first of a projected series of papers concerning the analysis of experiments with orthogonal block structure.


2018 ◽  
Vol 55 (2) ◽  
pp. 147-178
Author(s):  
Tadeusz Caliński ◽  
Idzi Siatkowski

SummaryThe main estimation and hypothesis testing procedures are presented for experiments conducted in nested block designs of a certain type. It is shown that, under appropriate randomization, these experiments have the convenient orthogonal block structure. Due to this property, the analysis of experimental data can be performed in a comparatively simple way. Certain simplifying procedures are indicated. The main advantage of the presented methodology concerns the analysis of variance and related hypothesis testing procedures. Under the adopted approach one can perform these analytical methods directly, not by combining the results from analyses based on stratum submodels. The application of the presented theory is illustrated by three examples of real experiments in relevant nested block designs. The present paper is the second in the planned series concerning the analysis of experiments with orthogonal block structure.


2018 ◽  
Vol 15 (1) ◽  
pp. 169-181
Author(s):  
M. I. Sidorov ◽  
М. Е. Stavrovsky ◽  
V. V. Irogov ◽  
E. S. Yurtsev

Using the example of van der Pol developed a mathematical model of frictional self-oscillations in topochemically kinetics. Marked qualitative correspondence of the results of calculation performed using the experimental data of researchers.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


2019 ◽  
Vol 106 (5-6) ◽  
pp. 2227-2241 ◽  
Author(s):  
Patrik Fager ◽  
Martina Calzavara ◽  
Fabio Sgarbossa

AbstractKitting – meaning to supply assembly with components in presorted kits – is widely seen as beneficial for assembly quality and efficiency when there is a multitude of component variants. However, the process by which kits are prepared – the kit preparation – is labour-intensive, and kit errors are problematic at assembly processes. The use of robotics to support kit preparation has received some attention by researchers, but literature is lacking with respect to how collaborative robots – cobots – can support kit preparation activities. The purpose of this paper is to identify the potential of a cobot to support time-efficient batch preparation of kits. To address the purpose, the paper presents a mathematical model for estimation of the cycle time associated with cobot-supported kit preparation. The model is applied in a numerical example with experimental data from laboratory experiments, and cobot-supported kit preparation is compared with manual kit preparation. The findings suggest that cobot-supported kit preparation is beneficial with diverse kits and smaller components quantities per SKU (Stock Keeping Unit) and provides less variability of the outcome, when compared to manual kit preparation. The paper reveals several insights about cobot-supported kit preparation that can be valuable for both academics and practitioners. The model developed can be used by practitioners to assess the potential of cobots to support kit-batch preparation in association with assembly, spare parts, repair and maintenance, or business to business industry.


2007 ◽  
Vol 23 ◽  
pp. 119-122
Author(s):  
Cristina Teișanu ◽  
Stefan Gheorghe ◽  
Ion Ciupitu

The most important features of the self-lubricating bearings are the antifriction properties such as friction coefficient and wear resistence and some mechanical properties such as hardness, tensile strength and radial crushing strength. In order to improve these properties new antifriction materials based on iron-copper powders with several additional components (tin, lead and molybdenum disulphide) have been developed by PM techniques. To find the optimal relationship between chemical compositions, antifriction and mechanical properties, in this paper a mathematical model of the sintering process is developed, which highlighted the accordance of the model with data by regression analysis. For the statistical processing of the experimental data the VH5 hardness values of the studied materials were considered. The development of mathematical model includes the enunciation of the model, the establishment of the performance function (optimization) and the establishment of the model equations and verifying. The accordance of the model with experimental data has been highlighted by regression analysis


Sign in / Sign up

Export Citation Format

Share Document