scholarly journals Tumor growth characteristics of the Walker 256 AR tumor, a regressive variant of the rat Walker 256 A tumor

2010 ◽  
Vol 53 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
Fernando Guimarães ◽  
Alessandra Soares Schanoski ◽  
Tereza Cristina Samico Cavalcanti ◽  
Priscila Bianchi Juliano ◽  
Ana Neuza Viera-Matos ◽  
...  

The present study aimed at characterizing the subcutaneous development of the Walker 256 (W256) AR tumor, a regressive variant of the rat W256 A tumor. Wistar rats were injected subcutaneously with 4x10(6) W256 A or W256 AR tumor cells. The development of tumors was evaluated daily by percutaneous measurements. None of the W256 A tumors (n=20) regressed, but 62% of the W256 AR tumor-bearing rats (n=21) underwent complete tumor regression within 35 days. Continuous growth of AR tumors was characterized by an increase of the tumor growth rate from day 12, which reached values above 1.0 g/day, and were significantly higher (p<0.05) than those of the regressive AR tumors. Immunosuppression by irradiation before subcutaneous injection of AR cells completely abrogated tumor regression and was associated with severe metastatic dissemination. Daily evaluation of the tumor growth rate enabled the discrimination, in advance, between continuously growing tumors and those that regressed later on.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3492
Author(s):  
Veronica Mollica ◽  
Stefano Brocchi ◽  
Filippo Gustavo Dall’Olio ◽  
Laura Marcolin ◽  
Alexandro Paccapelo ◽  
...  

Treatment response is usually assessed by the response evaluation criteria in solid tumors (RECIST). These criteria may not be adequate to evaluate the response to immunotherapy, considering the peculiar patterns of response reported with this therapy. With the advent of immunotherapy these criteria have been modified to include the evaluation of the peculiar responses seen with this type of therapy (iRECIST criteria), including pseudoprogressions and hyperprogressions. Tumor growth rate (TGR) is a dynamic evaluation that takes into account the kinetics of response to treatment and may help catch the real efficacy of an immunotherapy approach. We performed a retrospective monocentric study to explore the impact of TGR change after nivolumab administration as the second or later line of treatment in patients with metastatic renal cell carcinoma (RCC). We evaluated 27 patients, divided into three categories: Disease control (DC) if there was no PD; lower velocity PD (LvPD) if disease progressed but the TGR at second assessment (TGR2) was lower than the TGR at first assessment (TGR1); higher velocity PD (HvPD) if TGR2 was higher than TGR1. The median OS for the DC group was 11.0 months (95% CI 5.0–17.0) (reference) vs. (not reached) NR (95% CI NR-NR) for LvPD (HR 0.27; 95% CI 0.06–1.30; p 0.102) vs. NR (95% CI NR–NR) for HvPD (HR 0.23; 95% CI 0.06–0.88; p 0.032). There was no difference between LvPD and DC (HR 1.21; 95% CI 0.20–7.28; p 0.838). In patients with metastatic RCC, the second or later line of nivolumab treatment may lead to a deceleration in TGR resulting in an improved survival outcome similar to that observed in patients experiencing tumor regression. In this subgroup, especially in the presence of a clinical benefit, continuing the treatment beyond progression can be recommended.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A264-A264
Author(s):  
Shanshan Qi ◽  
Hongjuan Zhang ◽  
Ruilin Sun ◽  
Annie An ◽  
Henry Li ◽  
...  

BackgroundToll-like receptors (TLRs) serve critical roles in mediating innate immune responses against many pathogens. However, they may also bind to endogenous ligands and lead to the pathogenesis of autoimmunity. Although TLR8 belongs to the same TLR family as TLR7, its role in inflammation and tumor progression is not yet fully understood due to the lack of suitable animal models. In humans, both TLR7 and TLR8 recognize single-stranded self-RNA, viral RNA, and synthetic small molecule agonists.1, 2 However, mouse Tlr8 is non-functional due to the absence of 5 amino acids necessary for RNA recognition. In order to create a mouse model with functional TLR8, we replaced exon 3 of mouse Tlr8 with human TLR8, therefore developing a hTLR8 knock-in (KI) model. Both heterozygous and homozygous hTLR8 KI mice are viable with inflammatory phenotypes, i.e. enlarged spleens and livers, and significantly higher IL-12 p40 levels under TLR8 agonist treatment. In this study, we evaluated the potential use of hTLR8 mice for cancer immunotherapy studies.MethodshTLR8 mice, together with naïve C57BL/6 mice, were inoculated with MC38 syngeneic tumor cells. Tumor bearing mice were grouped at a mean tumor volume of approximately 100 mm3 for treatment with PBS or 10 mg/kg anti-PD-1 (RMP1-14) antibody. At the efficacy endpoint, spleens and tumors were collected for flow cytometry profiling.ResultsAnti-PD-1 treatment of MC38 tumors in naïve C57BL/6 led to moderate tumor growth inhibition (TGI = 54%). Interestingly, anti-PD-1 treatment showed improved efficacy in hTLR8 mice (TGI = 79%), including 2/10 tumors with complete tumor regression. In comparison, non-treated MC38 tumor growth rate was slower in hTLR8 mice than in naïve mice. Anti-PD-1 treated hTLR8 mice also had significantly increased IFN-γ and TNF-a positive CD4+ T cells in the spleen, along with higher numbers of differentiated effector T cells. In addition, hTLR8 mice have activated dendritic cells and macrophages, acting as critical steps in initiation of the inflammatory process, with higher levels of pro-inflammatory cytokines, such as IL-6, IFN-γ, TNF-a, and IL-1β, which may promote Th1 priming and differentiation of T cells into IFN-γ or TNF-a producing cells.ConclusionshTLR8 mice offer a great tool to model cancer immunotherapy in an inflammatory/autoimmunity prone background. Moreover, hTLR8 mice can be effectively used to shift a ‘cold’ tumor phenotype to ‘hot’ tumors in a syngeneic setting.Ethics ApprovalAnimal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).ReferencesKugelberg E. Making mice more human the TLR8 way. Nat Rev Immunol 2014;14:6.Guiducci C, Gong M, Cepika A-M, et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 2013;210:2903–2919.


Neurosurgery ◽  
2015 ◽  
Vol 79 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Alexander E. Ropper ◽  
Xiang Zeng ◽  
Hariprakash Haragopal ◽  
Jamie E. Anderson ◽  
Zaid Aljuboori ◽  
...  

Abstract BACKGROUND There are currently no satisfactory treatments or experimental models showing autonomic dysfunction for intramedullary spinal cord gliomas (ISCG). OBJECTIVE To develop a rat model of ISCG and investigate whether genetically engineered human neural stem cells (F3.hNSCs) could be developed into effective therapies for ISCG. METHODS Immunodeficient/Rowett Nude rats received C6 implantation of G55 human glioblastoma cells (10K/each). F3.hNSCs engineered to express either cytosine deaminase gene only (i.e., F3.CD) or dual genes of CD and thymidine kinase (i.e., F3.CD-TK) converted benign 5-fluorocytosine and ganciclovir into oncolytic 5-fluorouracil and ganciclovir-triphosphate, respectively. ISCG rats received injection of F3.CD-TK, F3.CD, or F3.CD-TK debris near the tumor epicenter 7 days after G55 seeding, followed with 5-FC (500 mg/kg/5 mL) and ganciclovir administrations (25 mg/kg/1 mL/day × 5/each repeat, intraperitoneal injection). Per humane standards for animals, loss of weight-bearing stepping in the hindlimb was used to determine post-tumor survival. Also evaluated were autonomic functions and tumor growth rate in vivo. RESULTS ISCG rats with F3.CD-TK treatment survived significantly longer (37.5 ± 4.78 days) than those receiving F3.CD (21.5 ± 1.75 days) or F3.CD-TK debris (19.3 ± 0.85 days; n = 4/group; P &lt;.05, median rank test), with significantly improved autonomic function and reduced tumor growth rate. F3.DC-TK cells migrated diffusively into ISCG clusters to mediate oncolytic effect. CONCLUSION Dual gene-engineered human neural stem cell regimen markedly prolonged survival in a rat model that emulates somatomotor and autonomic dysfunctions of human cervical ISCG. F3.CD-TK may provide a novel approach to treating clinical ISCG.


2010 ◽  
Vol 6 (3) ◽  
pp. e1000712 ◽  
Author(s):  
Samuel Bernard ◽  
Branka Čajavec Bernard ◽  
Francis Lévi ◽  
Hanspeter Herzel

Author(s):  
Fonghsu Kuo ◽  
Timothy Kotyla ◽  
Thomas Wilson ◽  
Lydia Kifle ◽  
Thomai Panagiotou ◽  
...  

Haigan ◽  
2014 ◽  
Vol 54 (7) ◽  
pp. 937-946
Author(s):  
Shusuke Sone ◽  
Ryoichi Kondo ◽  
Keiko Ishii ◽  
Takayuki Honda ◽  
Kazuo Yoshida ◽  
...  

2016 ◽  
Vol 18 (7) ◽  
pp. 1021-1027 ◽  
Author(s):  
Michael Sommerauer ◽  
Jan-Karl Burkhardt ◽  
Karl Frontzek ◽  
Elisabeth Rushing ◽  
Alfred Buck ◽  
...  

Endocrinology ◽  
2016 ◽  
Vol 157 (9) ◽  
pp. 3577-3587 ◽  
Author(s):  
Shahrzad Jalali ◽  
Eric Monsalves ◽  
Toru Tateno ◽  
Gelareh Zadeh

Pituitary adenomas (PAs) are common intracranial lesions. Available medical therapies are limited in PAs, and therefore, it is essential to identify treatments that control PA growth when surgery is not an option. Fibroblast growth factor 4 is implicated in PA pathogenesis; therefore, in this study, we used an isogenic mammosomatotroph cell line (GH4C1) harboring different fibroblast growth factor receptor (FGFR)-4 genotypes to establish and characterize intracranial xenograft mouse models that can be used for preclinical drug testing. We show that proliferating GH4C1 tumors have an average latency of 3 weeks to form. Histological analysis revealed that prototypic FGFR4 (G388) tumors express increased prolactin and less GH, whereas tumors possessing the polymorphic variant of FGFR4 (R388) express increased GH relative to prolactin. All tumors show abundant mammalian target of rapamycin (mTOR) signaling as confirmed using phosphorylated (p)-S6 and p-4E-binding protein 1 as downstream regulators of this pathway. We subsequently demonstrate that the mTOR inhibitor RAD001 decreases tumor growth rate and reduces p-S6 but not p-4E-binding protein 1 activation, regardless of FGFR4 status. More importantly, GH activity was significantly reduced after mTOR inhibition in the R388 polymorphic variant tumors. This reduction was also associated with a concomitant reduction in serum IGF-1 levels in the R388 group. In summary, we demonstrate that the GH4C1 FGFR polymorphic xenograft is a useful model for examining PAs. Furthermore, we show that RAD001 can efficiently reduce tumor growth rate by a reduction in mTOR signaling and more importantly results in control of GH expression and IGF-1 secretion, providing further support for using mTOR inhibitors in PA patients, in particular GH-producing adenomas.


Sign in / Sign up

Export Citation Format

Share Document