scholarly journals Occurrence of myo-inositol-1-phosphate phosphatase in pteridophytes: characteristics of the enzyme from the reproductive pinnules of Dryopteris filix-mas (L.) Schott

2007 ◽  
Vol 19 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Ritwika Banerjee ◽  
Dhani R. Chhetri ◽  
Jukta Adhikari

Evident myo-inositol-1-phosphate phosphatase (MIPP) activity has been detected both in the vegetative as well as in the spore-bearing organs of some selected pteridophytes having wide phylogenetic diversity. The basic characterization of this enzyme was carried out using the cosmopolitan fern Dryopteris filix-mas. The enzyme was partially purified from the cytosol fraction obtained from the reproductive pinnules of the plant to about 41-fold over the initial homogenate following low-speed centrifugation, streptomycin sulfate precipitation, 25-70% ammonium sulfate fractionation, CM Sephadex C-50 chromatography and finally gel-filtration on Ultrogel AcA 34. The apparent molecular weight of the native MIPP was estimated to be 94 kDa. The enzyme activity increased linearly with respect to protein concentration to about 150 µg and with respect to time up to 75 min. The temperature optimum was found at 40ºC. However, the enzyme showed good activity over the temperature range of 30-50ºC. This enzyme used D/L-myo-inositol-1-phosphate as its principal substrate (95-100%), however, about 16% activity was recorded when D-myo-inositol-3-phosphate substituted as substrate. Furthermore, weak (3%) activity of this MIPP was observed with 2-glycerophosphate as substrate. The apparent Km for pteridophytic MIPP was 0.083 mM. The enzyme was functional in a narrow pH range of 7.5 to 8.5. The activity of this MIPP enzyme was remarkably inhibited by the presence of a monovalent cation, lithium, and even moderately so at a low concentration such as 1 mM. On the other hand, magnesium, a divalent cation, enhanced activity at least up to 10 mM. Calcium diminished MIPP activity at concentrations over 4 mM.

1974 ◽  
Vol 31 (01) ◽  
pp. 072-085 ◽  
Author(s):  
M Kopitar ◽  
M Stegnar ◽  
B Accetto ◽  
D Lebez

SummaryPlasminogen activator was isolated from disrupted pig leucocytes by the aid of DEAE chromatography, gel filtration on Sephadex G-100 and final purification on CM cellulose, or by preparative gel electrophoresis.Isolated plasminogen activator corresponds No. 3 band of the starting sample of leucocyte cells (that is composed from 10 gel electrophoretic bands).pH optimum was found to be in pH range 8.0–8.5 and the highest pH stability is between pH range 5.0–8.0.Inhibition studies of isolated plasminogen activator were performed with EACA, AMCHA, PAMBA and Trasylol, using Anson and Astrup method. By Astrup method 100% inhibition was found with EACA and Trasylol and 30% with AMCHA. PAMBA gave 60% inhibition already at concentration 10–3 M/ml. Molecular weight of plasminogen activator was determined by gel filtration on Sephadex G-100. The value obtained from 4 different samples was found to be 28000–30500.


1996 ◽  
Vol 7 (10) ◽  
pp. 1535-1546 ◽  
Author(s):  
J P Paccaud ◽  
W Reith ◽  
J L Carpentier ◽  
M Ravazzola ◽  
M Amherdt ◽  
...  

We screened a human cDNA library with a probe derived from a partial SEC23 mouse homologue and isolated two different cDNA clones (hSec23A and hSec23B) encoding proteins of a predicted molecular mass of 85 kDa. hSec23Ap and hSec23Bp were 85% identical and shared 48% identity with the yeast Sec23p. Affinity-purified anti-hSec23A recognized a protein of approximately 85 kDa on immunoblots of human, mouse, and rat cell extracts but did not recognize yeast Sec23p. Cytosolic hSec23Ap migrated with an apparent molecular weight of 350 kDa on a gel filtration column, suggesting that it is part of a protein complex. By immunoelectron microscopy, hSec23Ap was found essentially in the ribosome-free transitional face of the endoplasmic reticulum (ER) and associated vesicles. hSec23Ap is a functional homologue of the yeast Sec23p as the hSec23A isoform complemented the temperature sensitivity of the Saccharomyces cerevisiae sec23-1 mutation at a restrictive temperature of 34 degrees C. RNase protection assays indicated that both hSec23 isoforms are coexpressed in various human tissues, although at a variable ratio. Our data demonstrate that hSec23Ap is the functional human counterpart of the yeast COPII component Sec23p and suggest that it plays a similar role in mammalian protein export from the ER. The exact function of hSec23Bp remains to be determined.


1976 ◽  
Vol 54 (2) ◽  
pp. 120-129 ◽  
Author(s):  
W. S. Rickert ◽  
P. A. McBride-Warren

The reaction of Mucor miehei protease with concanavalin A was followed by a turbidimetric assay in the pH range 5–8. At pH 4.0, no turbidity developed but binding of the enzyme to concanavalin A could be demonstrated by gel filtration. Two fractions of apparent molecular weight 65 000 and 52 000 were isolated, the 65 000 molecular weight species apparently representing a protomer of concanavalin A (24 000) bound to the enzyme. An analysis of the circular dichroism spectrum of this complex suggested that protomer binding results in a conformational change in the enzyme which is associated with a 30% increase in proteolytic activity.At pH 6.0, the enzyme was strongly bound to columns of concanavalin A Sepharose but could be removed by including α-methyl D-glucoside and NaCl in the elution buffer. Some column degradation occurred at room temperature but was not detectable at 4 °C where rapid elution of the enzyme resulted in a greater than 90% yield of highly active protein. Periodate-oxidized Mucor miehei protease and Mucor rennin did not react with concanavalin A and were not bound to the affinity column.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


1981 ◽  
Vol 199 (3) ◽  
pp. 639-647 ◽  
Author(s):  
R K Berge ◽  
L E Hagen ◽  
M Farstad

The palmitoyl-CoA hydrolase activity, which in human blood platelets is mainly localized in the cytosol fraction [Berge, Vollset & Farstad (1980) Scand. J. Clin. Lab. Invest. 40, 271--279], was found to be extremely labile. Inclusion of glycerol or palmitoyl-CoA stabilized the activity during preparation. Gel-filtration studies revealed multiple forms of the enzyme with molecular weights corresponding to about 70 000, 40 000 and 24 000. The relative recovery of the mol.wt.-70 000 form was increased by the presence of 20% (v/v) glycerol or 10 microM-palmitoyl-CoA. The three enzyme forms are probably unrelated, since they were not interconvertible. The three different species of palmitoyl-CoA hydrolase were purified by DEAE-cellulose and hydroxyapatite chromatography, isoelectric focusing and high-pressure liquid chromatography (h.p.l.c.) to apparent homogeneity. The three enzymes had isoelectric points (pI) of 7.0, 6.1 and 4.9. The corresponding molecular weights were 27 000--33 000, 66 000--72 000 and 45 000--49 000, calculated from h.p.l.c. and Ultrogel AcA-44 chromatography. The apparently purified enzymes were unstable, as most of the activity was lost during purification. The enzyme with an apparent molecular weight of 45 000--49 000 was split into fractions with molecular weights of less than 10 000 by re-chromatography on h.p.l.c. concomitantly with a loss of activity. The stimulation of the activity by the presence of serum albumin seems to depend on the availability of palmitoyl-CoA, as has been reported for other palmitoyl-CoA hydrolases. [Berge & Farstad (1979) Eur. J. Biochem. 96, 393--401].


1981 ◽  
Vol 60 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Naotika Toki ◽  
Hiroyuki Sumi ◽  
Sumiyoshi Takasugi

1. A kallikrein-like enzyme in plasma of patients with acute pancreatitis was further purified by successive hydroxyapatite/cellulose and Sepharose-4B column chromatography. 2. By these procedures 0.26 mg of purified enzyme with a specific activity of 215 S-2266 chromozyme units/mg of protein was obtained from 10 ml of original plasma. 3. The purified material was homogeneous as ascertained by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had an apparent molecular weight of 31 000 as measured by gel filtration on Sephadex G-200. 4. It was confirmed immunologically that this enzyme was pancreatic kallikrein, which is distinct from plasma kallikrein, and that it could combine with α2-macroglobulin only in the presence of trypsin.


Blood ◽  
1983 ◽  
Vol 61 (5) ◽  
pp. 960-966 ◽  
Author(s):  
T Hoang ◽  
NN Iscove ◽  
N Odartchenko

Abstract The relationship between molecules having granulocyte colony- stimulating activity (G-CSA), erythroid burst-promoting activity (E- BPA), and activity promoting increase in the number of granulocytic progenitors in liquid culture (delta GPA) was explored in conditioned medium from human leukocytes (HLCM) and human placenta (HPCM). As tested on human hemopoietic progenitors in culture, G-CSA eluted from Sephadex G100 as a single peak with apparent molecular weight of 25,000, separating partially from E-BPA and delta GPA, which both had an apparent molecular weight of 45,000. All three activities eluted together from hydroxyapatite at low molarity phosphate. Their charge properties were also similar and all three electrofocused in flat gel beds in the pH range near 5.4. On both hydroxyapatite and isoelectric focusing, delta GPA sometimes separated partially from the other two activities but not consistently. The gel filtration result shows that in conditioned medium of human origin, molecules having G-CSA are not the same as those having delta GPA, suggesting a dual factor requirement in the granulocytic lineage reminiscent of that in the erythroid pathway. The results suggesting that delta GPA might differ from E-BPA, on the other hand, were not consistent enough to establish their nonidentity. Single micromanipulated cells proved capable of forming erythroid or granulocytic colonies in the presence of either crude or partially purified activity. The results establish that human colony-forming cells are direct primary targets of growth factors in HLCM and HPCM.


1985 ◽  
Vol 54 (04) ◽  
pp. 750-755 ◽  
Author(s):  
M Kopitar ◽  
B Rozman ◽  
J Babnik ◽  
V Turk ◽  
D E Mullins ◽  
...  

SummaryA plasminogen activator inhibitor (PA-I) which inhibits primarily plasminogen activator of the urokinase type (u-PA) was isolated from the cytosol of human peripheral leukocytes. The inhibitor was isolated using ion exchange chromatography, gel filtration and FPLC. This inhibitor has an apparent molecular weight of 45 kDa, determined by SDS-PAGE, and a pi of 5.5-5.7. The inhibitor is a fast reacting inhibitor, is thermally unstable and is inactivated outside the pH range 7-9. Treatment of cytosol to pH 9 for 30 min at 37° C resulted in a large increase in inhibitory activity. Antibodies against human placental UK-I completely quenched the inhibitory activity of human leucocyte UK-I.


1995 ◽  
Vol 308 (3) ◽  
pp. 733-741 ◽  
Author(s):  
S M Pitson ◽  
R J Seviour ◽  
B M McDougall ◽  
J R Woodward ◽  
B A Stone

Three (1-->3)-beta-D-glucanases (GNs) were isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. Homogeneity of the purified proteins was confirmed by SDS/PAGE, isoelectric focusing and N-terminal amino acid sequencing. All three GNs (GN I, II and III) are non-glycosylated, monomeric proteins with apparent molecular masses, estimated by SDS/PAGE, of 81, 85 and 89 kDa respectively. pI values for the three enzymes are 5.3, 5.1, and 4.4 respectively. The pH optimum for GN I is 6.5, and 5.0 for GN II and III. All three purified enzymes displayed stability over the pH range 4.5-10.0. Optimum activities for GN I, II and III were recorded at 65, 55 and 60 degrees C respectively, with both GN II and III having short-term stability up to 50 degrees C and GN I up to 55 degrees C. The purified GNs have high specificity for (1-->3)-beta-linkages and hydrolysed a range of (1-->3)-beta- and (1-->3)(1-->6)-beta-D-glucans, with laminarin from Laminaria digitata being the most rapidly hydrolysed substrate of those tested. K(m) values for GN I, II, and III against L. digitata laminarin were 0.1, 0.23 and 0.22 mg/ml respectively. D-Glucono-1,5-lactone does not inhibit any of the three GNs, some metals ions are mild inhibitors, and N-bromosuccinimide and KMnO4 are strong inhibitors. All three GNs acted in an exo-hydrolytic manner, determined by the release of alpha-glucose as the initial and major product of hydrolysis of (1-->3)-beta-D-glucans, and confirmed by viscometric analysis and the inability to cleave periodate-oxidized laminarin, and may be classified as (1-->3)-beta-D-glucan glucohydrolases (EC 3.2.1.58).


Sign in / Sign up

Export Citation Format

Share Document