scholarly journals Influence of internal sulfate attack on cement paste properties: contamination by pyrite

Author(s):  
Ana Paula Brandão Capraro ◽  
Juarez Hoppe Filho ◽  
Marcelo Henrique Medeiros

abstract: The objective of this work was to evaluate the influence of the presence of sulfate in the microstructure and compressive strength of cement pastes. The lack of availability of more suitable aggregates, for reasons of distance or costs, sometimes leads to the use of materials that contain sulfate in their composition, which is harmful to cement mixtures. Currently, there are normative recommendations that limit the content of contaminants in the aggregates. However, there are still divergences as to the content that does not damage the concrete. In order to discuss the levels presented in the standards and the values above those allowed by them, tests were carried out on cementitious compounds contaminated by pyrite in different levels of sulfates (0.0%, 0.5%, 1.0% and 5.0% of SO3). SEM, XRD, compressive strength, ultrasonic pulse velocity and porosity analyses were performed in samples at different ages until 720 days of age. During early ages until the first year, the most contaminated samples presented an increase in their strength (1.0% and 5.0% of SO3). This behavior was explained by SEM, XRD and porosity analyses by filling the pores with products of sulfate attack, such as ettringite. At the end of the tests (720 days) the series that presented the lowest compressive strength, the presence of cracks and large amounts of ettringite was the one that had 5.0% SO3 contamination, proving the importance of a normative limit content.

Author(s):  
Qadri Ahmed Yousif ◽  
Idris Bedirhanoglu ◽  
Mehmet Enver Aydin ◽  
Ziwar Zebari

In this study, the effect of age on the strength development of concrete was investigated. For this purpose, specimens casted with ready mix concrete for different grades of concrete were obtained from ready-mix concrete firms available in Diyarbakir city which is the one of the biggest cities of Turkey. A few sets with different grade of concrete cube specimens were used in the experimental work. Each set included over 40 specimens. For measuring concrete strength development, two different tests were used: ultrasonic pulse velocity testing (UPV) and uniaxial compressive strength testing. After UPV and compressive strength tests, strength development for early ages was evaluated and defined. The aim of this work is to define the path of strength development of certain grades of concrete used in the east regions of Turkey. Another aim of the work is to be able to determine concrete strength through non-destructive UPV tests. As a result, it was seen that concrete strength development for early ages is not linearly proportional to age. Further, UPV measurements can give information on the progress of concrete strength.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 13 (4) ◽  
pp. 1881
Author(s):  
Mei-Yu Xuan ◽  
Yi Han ◽  
Xiao-Yong Wang

This study examines the hydration–mechanical–autogenous shrinkage–durability–sustainability properties of ternary composites with limestone filler (LF) and ground-granulated blast furnace slag (BFS). Four mixtures were prepared with a water/binder ratio of 0.3 and different replacement ratios varying from 0 to 45%. Multiple experimental studies were performed at various ages. The experimental results are summarized as follows: (1) As the replacement levels increased, compressive strength and autogenous shrinkage (AS) decreased, and this relationship was linear. (2) As the replacement levels increased, cumulative hydration heat decreased. At the age of 3 and 7 days, there was a linear relationship between compressive strength and cumulative hydration heat. (3) Out of all mixtures, the ultrasonic pulse velocity (UPV) and electrical resistivity exhibited a rapid increase in the early stages and tended to slow down in the latter stages. There was a crossover of UPV among various specimens. In the later stages, the electrical resistivity of ternary composite specimens was higher than plain specimens. (4) X-ray diffraction (XRD) results showed that LF and BFS have a synergistic effect. (5) With increasing replacement ratios, the CO2 emissions per unit strength reduced, indicating the sustainability of ternary composites.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


2016 ◽  
Vol 11 (2) ◽  
pp. 53-66 ◽  
Author(s):  
Sudarshan Dattatraya Kore ◽  
A. K. Vyas

Abstract A huge amount waste (approximately 60%) is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.


Sign in / Sign up

Export Citation Format

Share Document