scholarly journals Formulation and evaluation of buccoadhesive quetiapine fumarate tablets

2012 ◽  
Vol 48 (2) ◽  
pp. 335-345 ◽  
Author(s):  
Appa Rao Potu ◽  
Naresh Pujari ◽  
Shashidher Burra ◽  
Prabhakar Reddy Veerareddy

The aim of present study was to develop and evaluate buccoadhesive Quetiapine Fumarate (QF) tablets, which is extensively metabolised by liver. Buccoadhesive tablets of QF were prepared using HPMC K4M, HPMC K15M and combination of carbopol and HPC as mucoadhesive polymers by direct compression method. Sodium deoxycholate was added to formulation to improve the permeation of drug. The formulations were tested for bioadhesion strength, ex vivo residence time, swelling time and in vitro dissolution studies and ex vivo permeation studies. Optimized formulation (F3) showed 92% in vitro release in 8 h and 67% permeation of drug through porcine buccal mucosa and followed fickian release mechanism with zero order kinetics. FTIR studies of optimized formulation showed no evidence of interaction between the drug and polymers. In vivo mucoadhesive behaviour of optimized formulation was performed and subjective parameters were evaluated.

2017 ◽  
Vol 1 (2) ◽  
pp. 01-04
Author(s):  
Hye jin

The objective of this study was to develop effective bioadhesive buccal bilayered tablets comprising of drug containing bioadhesive layer and drug free backing layer, expected to release the drug in unidirection for extended period of time. Tablets of ondansetron HCl were prepared by direct compression method using bioadhesive polymers like Carbopol 934P, Methocel K4M, Methocel K15M and Hydroxy propyl cellulose in different combinations and concentrations with backing layer of ethyl cellulose. Buccal tablets were evaluated by different parameters such as thickness, hardness, weight uniformity, content uniformity, swelling index, surface pH, ex vivo bioadhesive strength, ex vivo residence time, in vitro drug release, ex vivo drug permeation, stability studies in human saliva, in vivo mucoadhesive performance studies and FTIR studies. The modified in vitro assembly was used to measure the bioadhesive strength of tablets with fresh porcine buccal mucosa as model tissue. Bioadhesion strength was increased with increase in the concentration of carbopol. The tablets were evaluated for in vitro release in pH 6.6 phosphate buffer for 8 hr in standard dissolution apparatus. In order to improve the permeation of the drug, tauroglycholate (permeation enhancer) added in the optimized formulation at 10mM concentration. In order to determine the mode of release, the data was subjected to Korsmeyer and Peppas diffusion model. The optimized formula followed non-fickian release mechanism with zero order kinetics. Carbopol 934P and HPC in the ratio of 3:1 could be used to design effective and stable buccoadhesive tablets of ondansetron HCl. The present study concludes that buccal delivery of ondansetron HCl tablets can be good way to bypass the first pass metabolism.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 577 ◽  
Author(s):  
Wafaa E. Soliman ◽  
Tamer M. Shehata ◽  
Maged E. Mohamed ◽  
Nancy S. Younis ◽  
Heba S. Elsewedy

Background: Curcumin (Cur) possesses a variety of beneficial pharmacological properties including antioxidant, antimicrobial, anti-cancer and anti-inflammatory activities. Nevertheless, the low aqueous solubility and subsequent poor bioavailability greatly limits its effectiveness. Besides, the role of myrrh oil as an essential oil in treating inflammatory disorders has been recently demonstrated. The objective of the current investigation is to enhance Cur efficacy via developing Cur nanoemulgel, which helps to improve its solubility and permeability, for transdermal delivery. Methods: The formulated preparations (Cur gel, emulgel and nanoemulgel) were evaluated for their physical appearance, spreadability, viscosity, particle size, in vitro release and ex vivo drug permeation studies. The in vivo anti-inflammatory activity was estimated using the carrageenan-induced rat hind paw edema method. Results: The formulated Cur-loaded preparations exhibited good physical characteristics that were in the acceptable range of transdermal preparations. The release of Cur from gel, emulgel and nanoemulgel after 12 h was 72.17 ± 3.76, 51.93 ± 3.81 and 62.0 ± 3.9%, respectively. Skin permeation of Cur was significantly (p < 0.05) improved when formulated into nanoemulgel since it showed the best steady state transdermal flux (SSTF) value (108.6 ± 3.8 µg/cm2·h) with the highest enhancement ratio (ER) (7.1 ± 0.2). In vivo anti-inflammatory studies proved that Cur-loaded nanoemulgel displayed the lowest percent of swelling (26.6% after 12 h). Conclusions: The obtained data confirmed the potential of the nanoemulgel dosage form and established the synergism of myrrh oil and Cur as an advanced anti-inflammatory drug.


Author(s):  
Nallaguntla Lavanya ◽  
Indira Muzib ◽  
Aukunuru Jithan ◽  
Balekari Umamahesh

Objective: The objective of the present study was to prepare and evaluate a novel oral formulation of nanoparticles for the systemic delivery of low molecular weight heparin (LMWH). Methods: Nanoparticles were prepared by polyelectrolyte complexation (PEC) method using polymers sodium alginate and chitosan. Entrapment efficiency of LMWH in nanoparticles was found to be  ̴88%. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X‑ray diffraction (XRD), Scanning electron microscopy (SEM)  studies carried for nanoparticles. In vitro release studies were performed for the formulations. Ex vivo permeation studies were performed optimized formulation by using small intestine of rat and in vivo studies were conducted on rat model.Results: In vitro release studies demonstrated that the release of LMWH was negligible in the stomach and high in the small intestine. FTIR has indicated that there is no interaction between the ingredients in nanoparticle. DSC and XRD studies confirmed that the amino groups of chitosan interacted with the carboxylic groups of alginate. Invitro % drug release of 95% was shown by formulation AC5. Ex vivo permeation studies have elucidated that ̴ 73% of LMWH was transported across the epithelium. Nanoparticles have shown enhanced oral bioavailability of LMWH as revealed by 4.5 fold increase in AUC of plasma drug concentration time curve.Conclusion: The results suggest that the nanoparticles prepared can result in targeted delivery of LMWH into systemic circulation via intestinal and colon routes. Novel nanoparticles thus prepared in this study can be considered as a promising delivery system.Keywords: Antifactor Xa activity, Chitosan, Differential scanning calorimetry, Sodium alginate, Low-molecular-weight heparin, Oral bioavailability.


Author(s):  
Sarika S. Malode ◽  
Milind P. Wagh

The objective of present work was to develop taste masked orodispersible tablets of mirabegron. Mirabegron is beta 3 adrenoceptor agonist used to treat overactive bladder. Overactive bladder (OAB) is defined as a symptom syndrome showing feeling of urgency to urinate, typically accompanied by frequent daytime and nocturnal urination, in the absence of proven infection or other obvious pathology. Over active bladders are generally common in geriatrics. Moreover, this drug has a very strong bitter taste. Frequent dosing requires frequent water intake, which further aggregates the condition of over active bladder and bitter taste of drug affects patient compliance. Hence a need arises to mask the bitter taste for development of an ODT which does not require consuming water with every dosage. In this work, the bitter taste of mirabegron was masked by forming a complex with an ion exchange resin tulsion 344. The drug resin complexation process was optimized for resin activation, drug: resin ratio, soaking time and stirring time. In –vitro release studies revealed complete drug elution from the complex within 10 minutes in pH 1.2 buffer. The taste-masked complex was then formulated into palatable orodispersible tablets using a direct compression approach by use of superdisintegrants to achieve a rapid disintegration. The tablets were evaluated for weight variation, hardness, friability, drug content, wetting time, In- vivo disintegration time and in-vitro dissolution time.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (10) ◽  
pp. 39-46
Author(s):  
V Prakash ◽  
◽  
L. Keshri ◽  
V. Sharma ◽  
K. Pathak

The aim of the present study was to mask the bitter taste of oxybutynin chloride by lipid excipients and to develop its fast disintegrating tablet. For this purpose, a blend of two lipids, glyceryl behenate and glyceryl palmitostearate was utilized for taste masking by solvent evaporation method. The evaporation of solvent was accomplished by freeze drying and taste masked granules were characterized for their micromeritic and rheological properties. The state of dispersion was analyzed by SEM and DSC. Orodispersible tablets were then formulated (F1- F6) using Polyplasdone XL as extragranular superdisintegrant and evaluated for hardness, disintegration time, in vitro dissolution time and in vivo disintegration time. Results indicated that the formulation F6 exhibited minimum in vivo disintegration time of 8 sec with effective taste masking. In vitro release analysis indicated %DE10 and %DE25 of 51.48 and 76.53 respectively. Conclusively, taste masked orodispersible formulation of oxybutynin chloride was developed that could be beneficial for geriatric population.


Author(s):  
Pratik Swarup Das ◽  
Puja Saha

Objective: In present work was designed to develop suitable transdermal matrix patches of Phenformin hydrochloride using various hydrophilic (HPMC) and hydrophobic (EUDRAGID) polymers as matrix formers.Methods: Transdermal patches containing Phenformin hydrochloride were prepared by the solvent casting evaporation technique.Results: Revealed that prepared patches showed good physical characteristics, no drug-polymer interaction and no skin irritation was observed. The in vitro release study revealed that F3 formulation showed maximum release in 24 h. Formulation F3 was subjected for accelerated stability studies. The F3 formulation was found to be stable as there was no drastic change in the Physico-chemical properties of the patches, which was also confirmed by FTIR.Conclusion: Thus conclusion can be made that stable transdermal patches of Phenformin hydrochloride has been developed. F1, F2, F3, F4 formulations showed highest cumulative percentage drug release of 98.13%, 95.50%, 98.65%, 97.21% were obtained during in vitro drug release studies after 24 h. The release of Phenformin hydrochloride appears to be dependent on lipophilicity of the matrix. Moderately lipophillic matrices showed best release. The predominant release mechanism of drug through the fabricated matrices was believed to be by diffusion mechanism. Based upon the in vitro dissolution data the F3 formulation was concluded as optimized formulation.


Sign in / Sign up

Export Citation Format

Share Document