scholarly journals Learning Heterogeneous Spatial-Temporal Representation for Bike-Sharing Demand Prediction

Author(s):  
Youru Li ◽  
Zhenfeng Zhu ◽  
Deqiang Kong ◽  
Meixiang Xu ◽  
Yao Zhao

Bike-sharing systems, aiming at meeting the public’s need for ”last mile” transportation, are becoming popular in recent years. With an accurate demand prediction model, shared bikes, though with a limited amount, can be effectively utilized whenever and wherever there are travel demands. Despite that some deep learning methods, especially long shortterm memory neural networks (LSTMs), can improve the performance of traditional demand prediction methods only based on temporal representation, such improvement is limited due to a lack of mining complex spatial-temporal relations. To address this issue, we proposed a novel model named STG2Vec to learn the representation from heterogeneous spatial-temporal graph. Specifically, we developed an event-flow serializing method to encode the evolution of dynamic heterogeneous graph into a special language pattern such as word sequence in a corpus. Furthermore, a dynamic attention-based graph embedding model is introduced to obtain an importance-awareness vectorized representation of the event flow. Additionally, together with other multi-source information such as geographical position, historical transition patterns and weather, e.g., the representation learned by STG2Vec can be fed into the LSTMs for temporal modeling. Experimental results from Citi-Bike electronic usage records dataset in New York City have illustrated that the proposed model can achieve competitive prediction performance compared with its variants and other baseline models.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Liu He ◽  
Tangyi Guo ◽  
Kun Tang

System resources allocation optimization through dynamic scheduling is key to improving the service level of bike-sharing. This study innovatively introduces three types of invalid demand with negative effect including waiting, transfer, and abandoning, which consists of the total demand of bike-sharing system. Through exploring the dynamic relationship among users’ travel demands, the quantity and capacity of bikes at the rental points, the records of bicycles borrowed and returned, and the vehicle scheduling schemes, a demand forecasting model for bike-sharing is established. According to the predicted bikes and the maximum capacity limit at each rental point, an optimization model of scheduling scheme is proposed to reduce the invalid demand and the total scheduling time. A two-layer dynamic coupling model with iterative feedback is obtained by combining the demand prediction model and scheduling optimization model and is then solved by Nicked Pareto Genetic Algorithm (NPGA). The proposed model is applied to a case study and the optimal solution set and corresponding Pareto front are obtained. The invalid demand is greatly reduced from 1094 to 26 by an effective scheduling of 3 rounds and 96 minutes. Empirical results show that the proposed model is able to optimize the resource allocation of bike-sharing, significantly reduce the invalid demand caused by the absence of bikes at the rental point such as waiting in a place, walking to other rental points, and giving up for other travel modes, and effectively improve the system service level.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yajun Zhou ◽  
Lilei Wang ◽  
Rong Zhong ◽  
Yulong Tan

Accurate transfer demand prediction at bike stations is the key to develop balancing solutions to address the overutilization or underutilization problem often occurring in bike sharing system. At the same time, station transfer demand prediction is helpful to bike station layout and optimization of the number of public bikes within the station. Traditional traffic demand prediction methods, such as gravity model, cannot be easily adapted to the problem of forecasting bike station transfer demand due to the difficulty in defining impedance and distinct characteristics of bike stations (Xu et al. 2013). Therefore, this paper proposes a prediction method based on Markov chain model. The proposed model is evaluated based on field data collected from Zhongshan City bike sharing system. The daily production and attraction of stations are forecasted. The experimental results show that the model of this paper performs higher forecasting accuracy and better generalization ability.


2020 ◽  
Author(s):  
Jianbin Huang ◽  
Heli Sun ◽  
He Li ◽  
Longji Huang ◽  
Ao Li ◽  
...  

Abstract Predicting the bike demand can help rebalance the bikes and improve the service quality of a bike-sharing system. A lot of works focus on predicting the bike demand for all the stations, which is unnecessary as the travel cost of rebalance operations increases sharply as the number of stations increases. In this paper, we propose a framework for predicting the hourly bike demand based on the central stations we define. Firstly, we propose Two-Stage Station Clustering Algorithm to assign central stations and common stations into each cluster. Secondly, we propose a hierarchical prediction model to predict the hourly bike demand for every cluster and each central station progressively. Thirdly, we use a well-studied queuing model to determine the target initial inventory for each central station. The most innovative contribution of this paper is proposing the concept of central station, the use of a novel algorithm to cluster the central stations and present a hierarchical model, containing the Time and Weather Similarity Weighted K-Nearest Neighbor Algorithm and a linear model to predict the bike demand for central stations. The experimental results on the New York citi bike system demonstrate that our proposed method is more accurate than other methods in solving existing problems.


2021 ◽  
Vol 13 (7) ◽  
pp. 3727
Author(s):  
Fatema Rahimi ◽  
Abolghasem Sadeghi-Niaraki ◽  
Mostafa Ghodousi ◽  
Soo-Mi Choi

During dangerous circumstances, knowledge about population distribution is essential for urban infrastructure architecture, policy-making, and urban planning with the best Spatial-temporal resolution. The spatial-temporal modeling of the population distribution of the case study was investigated in the present study. In this regard, the number of generated trips and absorbed trips using the taxis pick-up and drop-off location data was calculated first, and the census population was then allocated to each neighborhood. Finally, the Spatial-temporal distribution of the population was calculated using the developed model. In order to evaluate the model, a regression analysis between the census population and the predicted population for the time period between 21:00 to 23:00 was used. Based on the calculation of the number of generated and the absorbed trips, it showed a different spatial distribution for different hours in one day. The spatial pattern of the population distribution during the day was different from the population distribution during the night. The coefficient of determination of the regression analysis for the model (R2) was 0.9998, and the mean squared error was 10.78. The regression analysis showed that the model works well for the nighttime population at the neighborhood level, so the proposed model will be suitable for the day time population.


2021 ◽  
Vol 11 (15) ◽  
pp. 6748
Author(s):  
Hsun-Ping Hsieh ◽  
Fandel Lin ◽  
Jiawei Jiang ◽  
Tzu-Ying Kuo ◽  
Yu-En Chang

Research on flourishing public bike-sharing systems has been widely discussed in recent years. In these studies, many existing works focus on accurately predicting individual stations in a short time. This work, therefore, aims to predict long-term bike rental/drop-off demands at given bike station locations in the expansion areas. The real-world bike stations are mainly built-in batches for expansion areas. To address the problem, we propose LDA (Long-Term Demand Advisor), a framework to estimate the long-term characteristics of newly established stations. In LDA, several engineering strategies are proposed to extract discriminative and representative features for long-term demands. Moreover, for original and newly established stations, we propose several feature extraction methods and an algorithm to model the correlations between urban dynamics and long-term demands. Our work is the first to address the long-term demand of new stations, providing the government with a tool to pre-evaluate the bike flow of new stations before deployment; this can avoid wasting resources such as personnel expense or budget. We evaluate real-world data from New York City’s bike-sharing system, and show that our LDA framework outperforms baseline approaches.


2014 ◽  
Vol 40 (3) ◽  
pp. 530-533 ◽  
Author(s):  
Corey H. Basch ◽  
Danna Ethan ◽  
Patricia Zybert ◽  
Sarah Afzaal ◽  
Michael Spillane ◽  
...  

Cities ◽  
2021 ◽  
pp. 103475
Author(s):  
Yan Chen ◽  
Yongping Zhang ◽  
D'Maris Coffman ◽  
Zhifu Mi

2020 ◽  
Vol 34 (01) ◽  
pp. 1079-1087
Author(s):  
An Yan ◽  
Bill Howe

Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility yet have been shown to reinforce socioeconomic inequity. These services rely on accurate demand prediction, but the demand data on which these models are trained reflect biases around demographics, socioeconomic conditions, and entrenched geographic patterns. To address these biases and improve fairness, we present FairST, a fairness-aware demand prediction model for spatiotemporal urban applications, with emphasis on new mobility. We use 1D (time-varying, space-constant), 2D (space-varying, time-constant) and 3D (both time- and space-varying) convolutional branches to integrate heterogeneous features, while including fairness metrics as a form of regularization to improve equity across demographic groups. We propose two spatiotemporal fairness metrics, region-based fairness gap (RFG), applicable when demographic information is provided as a constant for a region, and individual-based fairness gap (IFG), applicable when a continuous distribution of demographic information is available. Experimental results on bike share and ride share datasets show that FairST can reduce inequity in demand prediction for multiple sensitive attributes (i.e. race, age, and education level), while achieving better accuracy than even state-of-the-art fairness-oblivious methods.


Author(s):  
Raymond Gerte ◽  
Karthik C. Konduri ◽  
Naveen Eluru

Recent technological advances have paved the way for new mobility alternatives within established transportation networks, including on-demand ride hailing/sharing (e.g., Uber, Lyft) and citywide bike sharing. Common across these innovative modes is a lack of direct ownership by the user; in each of these mobility offerings, a resource not owned by the end users’ is shared for fulfilling travel needs. This concept has flourished and is being hailed as a potential option for autonomous vehicle operation moving forward. However, substantial investigation into how new shared modes affect travel behaviors and integrate into existing transportation networks is lacking. This paper explores whether the growth in the adoption and usage of these modes is unbounded, or if there is a limit to their uptake. Recent trends and shifts in Uber demand usage from New York City were investigated to explore the hypothesis. Using publicly available data about Uber trips, temporal trends in the weekly demand for Uber were explored in the borough of Manhattan. A panel-based random effects model accounting for both heteroscedasticity and autocorrelation effects was estimated wherein weekly demand was expressed as a function of a variety of demographic, land use, and environmental factors. It was observed that demand appeared to initially increase after the introduction of Uber, but seemed to have stagnated and waned over time in heavily residential portions of the island, contradicting the observed macroscopic unbounded growth. The implications extend beyond already existing fully shared systems and also affect the planning of future mobility offerings.


Sign in / Sign up

Export Citation Format

Share Document