scholarly journals Balanced Linear Contextual Bandits

Author(s):  
Maria Dimakopoulou ◽  
Zhengyuan Zhou ◽  
Susan Athey ◽  
Guido Imbens

Contextual bandit algorithms are sensitive to the estimation method of the outcome model as well as the exploration method used, particularly in the presence of rich heterogeneity or complex outcome models, which can lead to difficult estimation problems along the path of learning. We develop algorithms for contextual bandits with linear payoffs that integrate balancing methods from the causal inference literature in their estimation to make it less prone to problems of estimation bias. We provide the first regret bound analyses for linear contextual bandits with balancing and show that our algorithms match the state of the art theoretical guarantees. We demonstrate the strong practical advantage of balanced contextual bandits on a large number of supervised learning datasets and on a synthetic example that simulates model misspecification and prejudice in the initial training data.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1807
Author(s):  
Sascha Grollmisch ◽  
Estefanía Cano

Including unlabeled data in the training process of neural networks using Semi-Supervised Learning (SSL) has shown impressive results in the image domain, where state-of-the-art results were obtained with only a fraction of the labeled data. The commonality between recent SSL methods is that they strongly rely on the augmentation of unannotated data. This is vastly unexplored for audio data. In this work, SSL using the state-of-the-art FixMatch approach is evaluated on three audio classification tasks, including music, industrial sounds, and acoustic scenes. The performance of FixMatch is compared to Convolutional Neural Networks (CNN) trained from scratch, Transfer Learning, and SSL using the Mean Teacher approach. Additionally, a simple yet effective approach for selecting suitable augmentation methods for FixMatch is introduced. FixMatch with the proposed modifications always outperformed Mean Teacher and the CNNs trained from scratch. For the industrial sounds and music datasets, the CNN baseline performance using the full dataset was reached with less than 5% of the initial training data, demonstrating the potential of recent SSL methods for audio data. Transfer Learning outperformed FixMatch only for the most challenging dataset from acoustic scene classification, showing that there is still room for improvement.


Author(s):  
Chen Gong ◽  
Xiaojun Chang ◽  
Meng Fang ◽  
Jian Yang

Semi-Supervised Learning (SSL) is able to build reliable classifier with very scarce labeled examples by properly utilizing the abundant unlabeled examples. However, existing SSL algorithms often yield unsatisfactory performance due to the lack of supervision information. To address this issue, this paper formulates SSL as a Generalized Distillation (GD) problem, which treats existing SSL algorithm as a learner and introduces a teacher to guide the learner?s training process. Specifically, the intelligent teacher holds the privileged knowledge that ?explains? the training data but remains unknown to the learner, and the teacher should convey its rich knowledge to the imperfect learner through a specific teaching function. After that, the learner gains knowledge by ?imitating? the output of the teaching function under an optimization framework. Therefore, the learner in our algorithm learns from both the teacher and the training data, so its output can be substantially distilled and enhanced. By deriving the Rademacher complexity and error bounds of the proposed algorithm, the usefulness of the introduced teacher is theoretically demonstrated. The superiority of our algorithm to the related state-of-the-art methods has also been empirically demonstrated by the experiments on different datasets with various sources of privileged knowledge.


Author(s):  
Yujin Yuan ◽  
Liyuan Liu ◽  
Siliang Tang ◽  
Zhongfei Zhang ◽  
Yueting Zhuang ◽  
...  

Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C2SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.


Author(s):  
Shaobo Min ◽  
Xuejin Chen ◽  
Zheng-Jun Zha ◽  
Feng Wu ◽  
Yongdong Zhang

Learning-based methods suffer from a deficiency of clean annotations, especially in biomedical segmentation. Although many semi-supervised methods have been proposed to provide extra training data, automatically generated labels are usually too noisy to retrain models effectively. In this paper, we propose a Two-Stream Mutual Attention Network (TSMAN) that weakens the influence of back-propagated gradients caused by incorrect labels, thereby rendering the network robust to unclean data. The proposed TSMAN consists of two sub-networks that are connected by three types of attention models in different layers. The target of each attention model is to indicate potentially incorrect gradients in a certain layer for both sub-networks by analyzing their inferred features using the same input. In order to achieve this purpose, the attention models are designed based on the propagation analysis of noisy gradients at different layers. This allows the attention models to effectively discover incorrect labels and weaken their influence during parameter updating process. By exchanging multi-level features within two-stream architecture, the effects of noisy labels in each sub-network are reduced by decreasing the noisy gradients. Furthermore, a hierarchical distillation is developed to provide reliable pseudo labels for unlabelded data, which further boosts the performance of TSMAN. The experiments using both HVSMR 2016 and BRATS 2015 benchmarks demonstrate that our semi-supervised learning framework surpasses the state-of-the-art fully-supervised results.


2020 ◽  
Vol 34 (04) ◽  
pp. 3569-3576
Author(s):  
Yanbei Chen ◽  
Xiatian Zhu ◽  
Wei Li ◽  
Shaogang Gong

Semi-supervised learning (SSL) aims to avoid the need for collecting prohibitively expensive labelled training data. Whilst demonstrating impressive performance boost, existing SSL methods artificially assume that small labelled data and large unlabelled data are drawn from the same class distribution. In a more realistic scenario with class distribution mismatch between the two sets, they often suffer severe performance degradation due to error propagation introduced by irrelevant unlabelled samples. Our work addresses this under-studied and realistic SSL problem by a novel algorithm named Uncertainty-Aware Self-Distillation (UASD). Specifically, UASD produces soft targets that avoid catastrophic error propagation, and empower learning effectively from unconstrained unlabelled data with out-of-distribution (OOD) samples. This is based on joint Self-Distillation and OOD filtering in a unified formulation. Without bells and whistles, UASD significantly outperforms six state-of-the-art methods in more realistic SSL under class distribution mismatch on three popular image classification datasets: CIFAR10, CIFAR100, and TinyImageNet.


2012 ◽  
Vol 9 (4) ◽  
pp. 1513-1532 ◽  
Author(s):  
Xue Zhang ◽  
Wangxin Xiao

In order to address the insufficient training data problem, many active semi-supervised algorithms have been proposed. The self-labeled training data in semi-supervised learning may contain much noise due to the insufficient training data. Such noise may snowball themselves in the following learning process and thus hurt the generalization ability of the final hypothesis. Extremely few labeled training data in sparsely labeled text classification aggravate such situation. If such noise could be identified and removed by some strategy, the performance of the active semi-supervised algorithms should be improved. However, such useful techniques of identifying and removing noise have been seldom explored in existing active semi-supervised algorithms. In this paper, we propose an active semi-supervised framework with data editing (we call it ASSDE) to improve sparsely labeled text classification. A data editing technique is used to identify and remove noise introduced by semi-supervised labeling. We carry out the data editing technique by fully utilizing the advantage of active learning, which is novel according to our knowledge. The fusion of active learning with data editing makes ASSDE more robust to the sparsity and the distribution bias of the training data. It further simplifies the design of semi-supervised learning which makes ASSDE more efficient. Extensive experimental study on several real-world text data sets shows the encouraging results of the proposed framework for sparsely labeled text classification, compared with several state-of-the-art methods.


2012 ◽  
Vol 9 (4) ◽  
pp. 1627-1643 ◽  
Author(s):  
Xue Zhang ◽  
Wang-Xin Xiao

Clustering has been employed to expand training data in some semi-supervised learning methods. Clustering based methods are based on the assumption that the learned clusters under the guidance of initial training data can somewhat characterize the underlying distribution of the data set. However, our experiments show that whether such assumption holds is based on both the separability of the considered data set and the size of the training data set. It is often violated on data set of bad separability, especially when the initial training data are too few. In this case, clustering based methods would perform worse. In this paper, we propose a clustering based two-stage text classification approach to address the above problem. In the first stage, labeled and unlabeled data are first clustered with the guidance of the labeled data. Then a self-training style clustering strategy is used to iteratively expand the training data under the guidance of an oracle or expert. At the second stage, discriminative classifiers can subsequently be trained with the expanded labeled data set. Unlike other clustering based methods, the proposed clustering strategy can effectively cope with data of bad separability. Furthermore, our proposed framework converts the challenging problem of sparsely labeled text classification into a supervised one, therefore, supervised classification models, e.g. SVM, can be applied, and techniques proposed for supervised learning can be used to further improve the classification accuracy, such as feature selection, sampling methods and data editing or noise filtering. Our experimental results demonstrated the effectiveness of our proposed approach especially when the size of the training data set is very small.


Author(s):  
Yutian Lin ◽  
Xuanyi Dong ◽  
Liang Zheng ◽  
Yan Yan ◽  
Yi Yang

Most person re-identification (re-ID) approaches are based on supervised learning, which requires intensive manual annotation for training data. However, it is not only resourceintensive to acquire identity annotation but also impractical to label the large-scale real-world data. To relieve this problem, we propose a bottom-up clustering (BUC) approach to jointly optimize a convolutional neural network (CNN) and the relationship among the individual samples. Our algorithm considers two fundamental facts in the re-ID task, i.e., diversity across different identities and similarity within the same identity. Specifically, our algorithm starts with regarding individual sample as a different identity, which maximizes the diversity over each identity. Then it gradually groups similar samples into one identity, which increases the similarity within each identity. We utilizes a diversity regularization term in the bottom-up clustering procedure to balance the data volume of each cluster. Finally, the model achieves an effective trade-off between the diversity and similarity. We conduct extensive experiments on the large-scale image and video re-ID datasets, including Market-1501, DukeMTMCreID, MARS and DukeMTMC-VideoReID. The experimental results demonstrate that our algorithm is not only superior to state-of-the-art unsupervised re-ID approaches, but also performs favorably than competing transfer learning and semi-supervised learning methods.


2021 ◽  
Vol 11 (9) ◽  
pp. 4241
Author(s):  
Jiahua Wu ◽  
Hyo Jong Lee

In bottom-up multi-person pose estimation, grouping joint candidates into the appropriately structured corresponding instance of a person is challenging. In this paper, a new bottom-up method, the Partitioned CenterPose (PCP) Network, is proposed to better cluster the detected joints. To achieve this goal, we propose a novel approach called Partition Pose Representation (PPR) which integrates the instance of a person and its body joints based on joint offset. PPR leverages information about the center of the human body and the offsets between that center point and the positions of the body’s joints to encode human poses accurately. To enhance the relationships between body joints, we divide the human body into five parts, and then, we generate a sub-PPR for each part. Based on this PPR, the PCP Network can detect people and their body joints simultaneously, then group all body joints according to joint offset. Moreover, an improved l1 loss is designed to more accurately measure joint offset. Using the COCO keypoints and CrowdPose datasets for testing, it was found that the performance of the proposed method is on par with that of existing state-of-the-art bottom-up methods in terms of accuracy and speed.


2021 ◽  
Vol 11 (11) ◽  
pp. 4894
Author(s):  
Anna Scius-Bertrand ◽  
Michael Jungo ◽  
Beat Wolf ◽  
Andreas Fischer ◽  
Marc Bui

The current state of the art for automatic transcription of historical manuscripts is typically limited by the requirement of human-annotated learning samples, which are are necessary to train specific machine learning models for specific languages and scripts. Transcription alignment is a simpler task that aims to find a correspondence between text in the scanned image and its existing Unicode counterpart, a correspondence which can then be used as training data. The alignment task can be approached with heuristic methods dedicated to certain types of manuscripts, or with weakly trained systems reducing the required amount of annotations. In this article, we propose a novel learning-based alignment method based on fully convolutional object detection that does not require any human annotation at all. Instead, the object detection system is initially trained on synthetic printed pages using a font and then adapted to the real manuscripts by means of self-training. On a dataset of historical Vietnamese handwriting, we demonstrate the feasibility of annotation-free alignment as well as the positive impact of self-training on the character detection accuracy, reaching a detection accuracy of 96.4% with a YOLOv5m model without using any human annotation.


Sign in / Sign up

Export Citation Format

Share Document