scholarly journals SMIX(λ): Enhancing Centralized Value Functions for Cooperative Multi-Agent Reinforcement Learning

2020 ◽  
Vol 34 (05) ◽  
pp. 7301-7308
Author(s):  
Chao Wen ◽  
Xinghu Yao ◽  
Yuhui Wang ◽  
Xiaoyang Tan

This work presents a sample efficient and effective value-based method, named SMIX(λ), for reinforcement learning in multi-agent environments (MARL) within the paradigm of centralized training with decentralized execution (CTDE), in which learning a stable and generalizable centralized value function (CVF) is crucial. To achieve this, our method carefully combines different elements, including 1) removing the unrealistic centralized greedy assumption during the learning phase, 2) using the λ-return to balance the trade-off between bias and variance and to deal with the environment's non-Markovian property, and 3) adopting an experience-replay style off-policy training. Interestingly, it is revealed that there exists inherent connection between SMIX(λ) and previous off-policy Q(λ) approach for single-agent learning. Experiments on the StarCraft Multi-Agent Challenge (SMAC) benchmark show that the proposed SMIX(λ) algorithm outperforms several state-of-the-art MARL methods by a large margin, and that it can be used as a general tool to improve the overall performance of a CTDE-type method by enhancing the evaluation quality of its CVF. We open-source our code at: https://github.com/chaovven/SMIX.

Author(s):  
Kenny Young ◽  
Baoxiang Wang ◽  
Matthew E. Taylor

Reinforcement learning (RL) has had many successes, but significant hyperparameter tuning is commonly required to achieve good performance. Furthermore, when nonlinear function approximation is used, non-stationarity in the state representation can lead to learning instability. A variety of techniques exist to combat this --- most notably experience replay or the use of parallel actors. These techniques stabilize learning by making the RL problem more similar to the supervised setting. However, they come at the cost of moving away from the RL problem as it is typically formulated, that is, a single agent learning online without maintaining a large database of training examples. To address these issues, we propose Metatrace, a meta-gradient descent based algorithm to tune the step-size online. Metatrace leverages the structure of eligibility traces, and works for both tuning a scalar step-size and a respective step-size for each parameter. We empirically evaluate Metatrace for actor-critic on the Arcade Learning Environment. Results show Metatrace can speed up learning, and improve performance in non-stationary settings.


2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2789 ◽  
Author(s):  
Hang Qi ◽  
Hao Huang ◽  
Zhiqun Hu ◽  
Xiangming Wen ◽  
Zhaoming Lu

In order to meet the ever-increasing traffic demand of Wireless Local Area Networks (WLANs), channel bonding is introduced in IEEE 802.11 standards. Although channel bonding effectively increases the transmission rate, the wider channel reduces the number of non-overlapping channels and is more susceptible to interference. Meanwhile, the traffic load differs from one access point (AP) to another and changes significantly depending on the time of day. Therefore, the primary channel and channel bonding bandwidth should be carefully selected to meet traffic demand and guarantee the performance gain. In this paper, we proposed an On-Demand Channel Bonding (O-DCB) algorithm based on Deep Reinforcement Learning (DRL) for heterogeneous WLANs to reduce transmission delay, where the APs have different channel bonding capabilities. In this problem, the state space is continuous and the action space is discrete. However, the size of action space increases exponentially with the number of APs by using single-agent DRL, which severely affects the learning rate. To accelerate learning, Multi-Agent Deep Deterministic Policy Gradient (MADDPG) is used to train O-DCB. Real traffic traces collected from a campus WLAN are used to train and test O-DCB. Simulation results reveal that the proposed algorithm has good convergence and lower delay than other algorithms.


Author(s):  
Daxue Liu ◽  
Jun Wu ◽  
Xin Xu

Multi-agent reinforcement learning (MARL) provides a useful and flexible framework for multi-agent coordination in uncertain dynamic environments. However, the generalization ability and scalability of algorithms to large problem sizes, already problematic in single-agent RL, is an even more formidable obstacle in MARL applications. In this paper, a new MARL method based on ordinal action selection and approximate policy iteration called OAPI (Ordinal Approximate Policy Iteration), is presented to address the scalability issue of MARL algorithms in common-interest Markov Games. In OAPI, an ordinal action selection and learning strategy is integrated with distributed approximate policy iteration not only to simplify the policy space and eliminate the conflicts in multi-agent coordination, but also to realize the approximation of near-optimal policies for Markov Games with large state spaces. Based on the simplified policy space using ordinal action selection, the OAPI algorithm implements distributed approximate policy iteration utilizing online least-squares policy iteration (LSPI). This resulted in multi-agent coordination with good convergence properties with reduced computational complexity. The simulation results of a coordinated multi-robot navigation task illustrate the feasibility and effectiveness of the proposed approach.


Author(s):  
Shihui Li ◽  
Yi Wu ◽  
Xinyue Cui ◽  
Honghua Dong ◽  
Fei Fang ◽  
...  

Despite the recent advances of deep reinforcement learning (DRL), agents trained by DRL tend to be brittle and sensitive to the training environment, especially in the multi-agent scenarios. In the multi-agent setting, a DRL agent’s policy can easily get stuck in a poor local optima w.r.t. its training partners – the learned policy may be only locally optimal to other agents’ current policies. In this paper, we focus on the problem of training robust DRL agents with continuous actions in the multi-agent learning setting so that the trained agents can still generalize when its opponents’ policies alter. To tackle this problem, we proposed a new algorithm, MiniMax Multi-agent Deep Deterministic Policy Gradient (M3DDPG) with the following contributions: (1) we introduce a minimax extension of the popular multi-agent deep deterministic policy gradient algorithm (MADDPG), for robust policy learning; (2) since the continuous action space leads to computational intractability in our minimax learning objective, we propose Multi-Agent Adversarial Learning (MAAL) to efficiently solve our proposed formulation. We empirically evaluate our M3DDPG algorithm in four mixed cooperative and competitive multi-agent environments and the agents trained by our method significantly outperforms existing baselines.


2020 ◽  
Vol 34 (05) ◽  
pp. 7253-7260 ◽  
Author(s):  
Yuhang Song ◽  
Andrzej Wojcicki ◽  
Thomas Lukasiewicz ◽  
Jianyi Wang ◽  
Abi Aryan ◽  
...  

Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/.


Author(s):  
Thomas Recchia ◽  
Jae Chung ◽  
Kishore Pochiraju

As robotic systems become more prevalent, it is highly desirable for them to be able to operate in highly dynamic environments. A common approach is to use reinforcement learning to allow an agent controlling the robot to learn and adapt its behavior based on a reward function. This paper presents a novel multi-agent system that cooperates to control a single robot battle tank in a melee battle scenario, with no prior knowledge of its opponents’ strategies. The agents learn through reinforcement learning, and are loosely coupled by their reward functions. Each agent controls a different aspect of the robot’s behavior. In addition, the problem of delayed reward is addressed through a time-averaged reward applied to several sequential actions at once. This system was evaluated in a simulated melee combat scenario and was shown to learn to improve its performance over time. This was accomplished by each agent learning to pick specific battle strategies for each different opponent it faced.


Author(s):  
Kazuteru Miyazaki ◽  
◽  
Keiki Takadama ◽  

Recently, the tailor-made system that grants an individual request has been recognized as the important approach. Such a system requires the ggoal-directed learningh through interaction between user and system, which is mainly addressed in greinforcement learningh domain. This special issue on gNew Trends in Reinforcement Learningh called for papers on the cuttingedge research exploring the goal-directed learning, which represents reinforcement learning. Many contributions were forthcoming, but we finally selected 12 works for publication. Although greinforcement learningh is included in the title of this special issue, the research works do not necessarily have to be on reinforcement learning itself, so long as the theme coincides with that of this special issue. In making our final selections, we gave special consideration to the kinds of research which can actively lead to new trends in reinforcement learning. Of the 12 papers in this special issue, the first four mainly deal with the expansion of the reinforcement learning method in single agent environments. These cover a broad range of research, from works based on dynamic programming to exploitation-oriented methods. The next two works deal with the Learning Classifier System (LCS), which applies the rule discovery mechanism to reinforcement learning. LCS is a technique with a long history, but for this issue, we were able to publish two theoretical works. We are also grateful to Prof. Toshio Fukuda, Nagoya University, and Prof. Kaoru Hirota, Tokyo Institute of Technology, the editors-in-chief, and the NASTEC 2008 conference staff for inviting us to guest-edit this Journal. The next four papers mainly deal with multi agent environments. We were able to draw from a wide range of research: from measuring interaction, through the expansion of techniques incorporating simultaneous learning, to research leading to application in multi agent environments. The last two contributions mainly deal with application. We publish one paper on exemplar generalization and another detailing the successful application to government bond trading. Each of these researches can be considered to be at the cutting-edge of reinforcement learning. We would like to end by saying that we hope this special issue constitutes a large contribution to the development of the field while holding a wide international appeal.


2016 ◽  
Vol 31 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Sam Devlin ◽  
Daniel Kudenko

AbstractRecent theoretical results have justified the use of potential-based reward shaping as a way to improve the performance of multi-agent reinforcement learning (MARL). However, the question remains of how to generate a useful potential function.Previous research demonstrated the use of STRIPS operator knowledge to automatically generate a potential function for single-agent reinforcement learning. Following up on this work, we investigate the use of STRIPS planning knowledge in the context of MARL.Our results show that a potential function based on joint or individual plan knowledge can significantly improve MARL performance compared with no shaping. In addition, we investigate the limitations of individual plan knowledge as a source of reward shaping in cases where the combination of individual agent plans causes conflict.


Sign in / Sign up

Export Citation Format

Share Document