scholarly journals Understanding Generalization in Neural Networks for Robustness against Adversarial Vulnerabilities

2020 ◽  
Vol 34 (10) ◽  
pp. 13714-13715
Author(s):  
Subhajit Chaudhury

Neural networks have contributed to tremendous progress in the domains of computer vision, speech processing, and other real-world applications. However, recent studies have shown that these state-of-the-art models can be easily compromised by adding small imperceptible perturbations. My thesis summary frames the problem of adversarial robustness as an equivalent problem of learning suitable features that leads to good generalization in neural networks. This is motivated from learning in humans which is not trivially fooled by such perturbations due to robust feature learning which shows good out-of-sample generalization.

2020 ◽  
Vol 10 (9) ◽  
pp. 3135 ◽  
Author(s):  
Ling Luo ◽  
Dingyu Xue ◽  
Xinglong Feng

In recent years, benefiting from deep convolutional neural networks (DCNNs), face parsing has developed rapidly. However, it still has the following problems: (1) Existing state-of-the-art frameworks usually do not satisfy real-time while pursuing performance; (2) similar appearances cause incorrect pixel label assignments, especially in the boundary; (3) to promote multi-scale prediction, deep features and shallow features are used for fusion without considering the semantic gap between them. To overcome these drawbacks, we propose an effective and efficient hierarchical aggregation network called EHANet for fast and accurate face parsing. More specifically, we first propose a stage contextual attention mechanism (SCAM), which uses higher-level contextual information to re-encode the channel according to its importance. Secondly, a semantic gap compensation block (SGCB) is presented to ensure the effective aggregation of hierarchical information. Thirdly, the advantages of weighted boundary-aware loss effectively make up for the ambiguity of boundary semantics. Without any bells and whistles, combined with a lightweight backbone, we achieve outstanding results on both CelebAMask-HQ (78.19% mIoU) and Helen datasets (90.7% F1-score). Furthermore, our model can achieve 55 FPS on a single GTX 1080Ti card with 640 × 640 input and further reach over 300 FPS with a resolution of 256 × 256, which is suitable for real-world applications.


Author(s):  
Xiabing Zhou ◽  
Xingxing Xing ◽  
Lei Han ◽  
Haikun Hong ◽  
Kaigui Bian ◽  
...  

Learning with incomplete data remains challenging in many real-world applications especially when the data is high-dimensional and dynamic. Many imputation-based algorithms have been proposed to handle with incomplete data, where these algorithms use statistics of the historical information to remedy the missing parts. However, these methods merely use the structural information existing in the data, which are very helpful for sharing between the complete entries and the missing ones. For example, in traffic system, some group information and temporal smoothness exist in the data structure. In this paper, we propose to incorporate these structural information and develop structural feature leaning method for learning with incomplete data (SFLIC). The SFLIC model adopt a fused Lasso based regularizer and a group Lasso style regularizer to enlarge the data sharing along both the temporal smoothness level and the feature group level to fill the gap where the data entries are missing. The proposed SFLIC model is a nonsmooth function according to the model parameters, and we adopt the smoothing proximal gradient (SPG) method to seek for an efficient solution. We evaluate our model on both synthetic and real-world highway traffic datasets. Experimental results show that our method outperforms the state-of-the-art methods.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andre Esteva ◽  
Katherine Chou ◽  
Serena Yeung ◽  
Nikhil Naik ◽  
Ali Madani ◽  
...  

AbstractA decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


2014 ◽  
pp. 8-20
Author(s):  
Kurosh Madani

In a large number of real world dilemmas and related applications the modeling of complex behavior is the central point. Over the past decades, new approaches based on Artificial Neural Networks (ANN) have been proposed to solve problems related to optimization, modeling, decision making, classification, data mining or nonlinear functions (behavior) approximation. Inspired from biological nervous systems and brain structure, Artificial Neural Networks could be seen as information processing systems, which allow elaboration of many original techniques covering a large field of applications. Among their most appealing properties, one can quote their learning and generalization capabilities. The main goal of this paper is to present, through some of main ANN models and based techniques, their real application capability in real world industrial dilemmas. Several examples through industrial and real world applications have been presented and discussed.


2020 ◽  
Vol 68 ◽  
pp. 311-364
Author(s):  
Francesco Trovo ◽  
Stefano Paladino ◽  
Marcello Restelli ◽  
Nicola Gatti

Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes of sequential decision problems in the past decades. However, non-stationary settings -- very common in real-world applications -- received little attention so far, and theoretical guarantees on the regret are known only for some frequentist algorithms. In this paper, we propose an algorithm, namely Sliding-Window Thompson Sampling (SW-TS), for nonstationary stochastic MAB settings. Our algorithm is based on Thompson Sampling and exploits a sliding-window approach to tackle, in a unified fashion, two different forms of non-stationarity studied separately so far: abruptly changing and smoothly changing. In the former, the reward distributions are constant during sequences of rounds, and their change may be arbitrary and happen at unknown rounds, while, in the latter, the reward distributions smoothly evolve over rounds according to unknown dynamics. Under mild assumptions, we provide regret upper bounds on the dynamic pseudo-regret of SW-TS for the abruptly changing environment, for the smoothly changing one, and for the setting in which both the non-stationarity forms are present. Furthermore, we empirically show that SW-TS dramatically outperforms state-of-the-art algorithms even when the forms of non-stationarity are taken separately, as previously studied in the literature.


2021 ◽  
Author(s):  
Chih-Kuan Yeh ◽  
Been Kim ◽  
Pradeep Ravikumar

Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image is important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.


Author(s):  
Wen Xu ◽  
Jing He ◽  
Yanfeng Shu

Transfer learning is an emerging technique in machine learning, by which we can solve a new task with the knowledge obtained from an old task in order to address the lack of labeled data. In particular deep domain adaptation (a branch of transfer learning) gets the most attention in recently published articles. The intuition behind this is that deep neural networks usually have a large capacity to learn representation from one dataset and part of the information can be further used for a new task. In this research, we firstly present the complete scenarios of transfer learning according to the domains and tasks. Secondly, we conduct a comprehensive survey related to deep domain adaptation and categorize the recent advances into three types based on implementing approaches: fine-tuning networks, adversarial domain adaptation, and sample-reconstruction approaches. Thirdly, we discuss the details of these methods and introduce some typical real-world applications. Finally, we conclude our work and explore some potential issues to be further addressed.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 407 ◽  
Author(s):  
Dominik Weikert ◽  
Sebastian Mai ◽  
Sanaz Mostaghim

In this article, we present a new algorithm called Particle Swarm Contour Search (PSCS)—a Particle Swarm Optimisation inspired algorithm to find object contours in 2D environments. Currently, most contour-finding algorithms are based on image processing and require a complete overview of the search space in which the contour is to be found. However, for real-world applications this would require a complete knowledge about the search space, which may not be always feasible or possible. The proposed algorithm removes this requirement and is only based on the local information of the particles to accurately identify a contour. Particles search for the contour of an object and then traverse alongside using their known information about positions in- and out-side of the object. Our experiments show that the proposed PSCS algorithm can deliver comparable results as the state-of-the-art.


Sign in / Sign up

Export Citation Format

Share Document