Late-Season Seed Production in Arable Weed Communities: Management Implications

Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Muthukumar V. Bagavathiannan ◽  
Jason K. Norsworthy

Late-season weed escapes are often ignored because they rarely cause crop yield penalty. Traditional weed management recommendations are based on the economic threshold (ET) approach, wherein management is required if the predicted current-season yield loss is greater than the cost of control interventions. While ET-based weed management can reduce current-season production costs and promote farmland biodiversity, it does not consider the long-term biological and economic consequences associated with late-season weed seed production. An important concern is that late-season weed seed production will replenish the soil seedbank, ensuring future weed problems. In the context of herbicide resistance evolution, allowing late-season weed seed production can be problematic because the probabilities of occurrence of resistant mutants rise with increases in seed production. A key component of herbicide resistance mitigation and management is preventing seed production and buildup of the soil seedbank. Late-season weed management efforts constitute additional expenses to growers, which cannot be recouped in that growing season, but any such investment must be weighed against the perceived long-term benefits. It appears that management of late-season weed escapes is valuable in a number of situations, and the degree to which management interventions should be employed can be case-specific. Adoption of economic optimum thresholds (EOTs), which can be established using bio-economic models, will be useful for making management decisions for late-season weed escapes. In systems vulnerable to herbicide resistance evolution, bio-economic resistance thresholds (BERTs) will be appropriate and bio-economic resistance models (BERMs) will be helpful for establishing such thresholds for specific production scenarios. Management considerations for late-season weed escapes are discussed, and knowledge gaps for future research are identified.

Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Erin C. Hill ◽  
Karen A. Renner ◽  
Mark J. VanGessel ◽  
Robin R. Bellinder ◽  
Barbara A. Scott

Integrated weed management (IWM) for agronomic and vegetable production systems utilizes all available options to effectively manage weeds. Late-season weed control measures are often needed to improve crop harvest and stop additions to the weed seed bank. Eliminating the production of viable weed seeds is one of the key IWM practices. The objective of this research was to determine how termination method and timing influence viable weed seed production of late-season weed infestations. Research was conducted in Delaware, Michigan, and New York over a 2-yr period. The weeds studied included: common lambsquarters, common ragweed, giant foxtail, jimsonweed, and velvetleaf. Three termination methods were imposed: cutting at the plant base (simulating hand hoeing), chopping (simulating mowing), and applying glyphosate. The three termination timings were flowering, immature seeds present, and mature seeds present. Following termination, plants were stored in the field in mesh bags until mid-Fall when seeds were counted and tested for viability. Termination timing influenced viable seed development; however, termination method did not. Common ragweed and giant foxtail produced viable seeds when terminated at the time of flowering. All species produced some viable seed when immature seeds were present at the time of termination. The time of viable seed formation varied based on species and site-year, ranging from plants terminated the day of flowering to 1,337 growing degree d after flowering (base 10, 0 to 57 calendar d). Viable seed production was reduced by 64 to 100% when common lambsquarters, giant foxtail, jimsonweed, and velvetleaf were terminated with immature seeds present, compared to when plants were terminated with some mature seeds present. Our results suggest that terminating common lambsquarters, common ragweed, and giant foxtail prior to flowering, and velvetleaf and jimsonweed less than 2 and 3 wk after flowering, respectively, greatly reduces weed seed bank inputs.


2021 ◽  
Vol 3 ◽  
Author(s):  
Katie M. Patterson ◽  
Lauren M. Schwartz-Lazaro ◽  
Gabrielle LaBiche ◽  
Daniel O. Stephenson

The soil seedbank allows for long-term persistence of weed species in agricultural fields. Some weed species can persist in the soil seedbank for extended periods. Restricting inputs into the weed seedbank has a large impact on future population density and influences management practices of these weeds in soybean production systems. Harvest weed seed control (HWSC) tactics incorporate mechanical and cultural management strategies to target weed seeds present at harvest. A 3-year trial was initiated to determine if continual use of the HWSC method, narrow windrow burning, selects for earlier seed set and shattering in Louisiana soybean. No shifts in weed populations or shattering time were observed. However, there was a significant reduction in weed density and the weed seed present in the soil seedbank when HWSC and robust herbicide programs were used in combination. Therefore, utilizing multiple effective weed management strategies is imperative in reducing the soil seedbank.


2001 ◽  
Vol 41 (8) ◽  
pp. 1179 ◽  
Author(s):  
S. R. Walker ◽  
G. R. Robinson ◽  
R. W. Medd

The competitive advantage of barley compared with wheat was quantified for suppressing seed production of Avena ludoviciana Durieu. (wild oats) andPhalaris paradoxa L. (paradoxa grass), and for improving herbicide effectiveness on these major winter grass weeds of the subtropical grain region of Australia. Eight field experiments were broadcast with weed seed before sowing wheat or barley, in which the emerged weeds were then treated with 4 herbicide doses (0, 25, 50, 100% of recommended rates). Yield reduction from untreated weeds was on average 4 times greater in wheat than in barley, with greater losses from A. ludoviciana than P. paradoxa. Barley did not affect weed emergence, but suppressed weed tiller density and, to a lesser extent, the number of weed seeds per tiller. Seed production was, on average, 4340 and 5105 seeds/m2 for A. ludoviciana and P. paradoxa, respectively, in untreated wheat compared with 555 and 50 seeds/m2 in untreated barley. Weed seed production following treatment with 25% herbicide rate in barley was similar or less than that after treatment with 100% herbicide rate in wheat. Overall, 25% herbicide rate was optimal for both conserving yield and minimising weed seed production in barley. For wheat, maximum yield was achieved with 50% herbicide but weed seed production was lowest with 100% herbicide rate. This indicates that weeds can be effectively controlled in barley with considerably less herbicide than required in wheat, highlighting the importance of including barley as a part of weed management strategies that aim to reduce herbicide inputs.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Lizabeth A. B. Stahl ◽  
Gregg A. Johnson ◽  
Ronald L. Wyse ◽  
Douglas D. Buhler ◽  
Jeffrey L. Gunsolus

Weed management can be a significant challenge in cropping systems, partly because the effects of tillage systems on weed seedbank and seedling population dynamics are not well understood. Field research was conducted from 1994 to 1996 in established tillage plots consisting of moldboard plow (MP), chisel plow (CP), and no-tillage (NT). The objectives were to determine the effects of long-term tillage systems on the timing and duration ofSetariaspp. emergence and percentage cumulative emergence from the soil seedbank and to investigate the effect of tillage onSetariaspp. density and seed production following glyphosate application atSetariaspp. heights of 5, 10, and 15 cm. NT contained a greater number ofSetariaspp. seed in the 0- to 1-, 1- to 3-, and 3- to 6-cm depths than MP or CP systems. There was little difference between the three tillage systems at depths greater than 6 cm.Setariaspp. emergence was greater in NT than in MP or CP in 1994 and 1996 and greater than in MP in 1995. There was a substantial increase inSetariaspp. emergence in NT between 3 and 4 weeks after planting (WAP) in 1994 and between 5 and 6 WAP in 1995 and 1996. Significant emergence did not occur past 5 to 6 WAP in 1994 and 1995 but continued over a longer period of time in 1996.Setariaspp. plants consistently reached targeted herbicide application heights 4 to 9 d earlier in NT than in CP and MP. In 1994, finalSetariaspp. density was greater in NT compared to CP and MP at the 5- and 10-cm herbicide application timings. When glyphosate was applied to 15-cm-tallSetaria, very few weeds were present following application across all tillage systems. In 1995, NT resulted in greaterSetariaspp. density than MP or CP across all application timings. There was no difference in finalSetariaspp. density between MP and CP across all glyphosate timings in 1994 and 1995. Seed production was negligible in MP and CP, regardless of glyphosate timing. In NT, however, significant seed production occurred, especially with early application. Results indicate that the effectiveness of nonresidual herbicides forSetaria faberiHerrm. control is influenced by tillage system and the timing of application.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 683-694 ◽  
Author(s):  
Alberto Collavo ◽  
Silvia Panozzo ◽  
Antonio Allegri ◽  
Maurizio Sattin

Italian ryegrass populations investigated in this study were harvested in an alfalfa-based cropping system. In that system, the agronomic practices and chemical weed management, based on the use of aryloxyphenoxy-propionates herbicides (i.e., quizalofop ethyl ester), were optimized to obtain a dual seed–forage production. Five of seven populations tested were confirmed resistant to quizalofop ethyl ester with resistance indexes ranging from 4.5 to >209. Both target- and nontarget-site resistance mechanisms were most likely involved. Three allelic variants were detected (Ile-1781–Leu, Trp-2027–Cys, and Ile-2041–Asn) in four resistant populations, whereas no known mutations were found in one resistant population. The herbicide treatment on Italian ryegrass plants at different phenological stages suggested that to control regrowth, it is necessary to use two to fives times the herbicide dose suitable for younger plants. This situation is encountered in fields when Italian ryegrass plants need to be controlled to maximize the alfalfa seed production, and it is comparable to using a sublethal herbicide dose, leading to the selection of herbicide-resistant biotypes. In such a situation, the cropping system is not sustainable, and integrated weed management should be implemented to deplete the soil weed seed bank and prevent new weed seed production.


2008 ◽  
Vol 22 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Andrew W. Lenssen

In the semiarid northern Great Plains, the adoption of zero tillage improves soil water conservation, allowing for increased crop intensification and diversification. Zero-tillage crop production relies heavily on herbicides for weed management, particularly the herbicide glyphosate, increasing selection pressure for herbicide-resistant weeds. Barley is well adapted to the northern Great Plains, and may be a suitable herbicide-free forage crop in zero-tillage systems. A 2-yr field study was conducted to determine if planting date influenced crop and weed biomass, water use (WU), and water-use efficiency (WUE) of barley and weed seed production in three preplant weed management systems: (1) conventional preplant tillage with a field cultivator (TILL); (2) zero tillage with preemergence glyphosate application (ZTPRE); and (3) zero tillage without preemergence glyphosate (ZT). None of the systems included an in-crop herbicide. Planting dates were mid-April (early), late May (mid), and mid-June (delayed). Early planting of ZT barley resulted in excellent forage yields (7,228 kg/ha), similar to those from TILL and ZTPRE. Early planting resulted in a small accumulation of weed biomass, averaging 76 kg/ha, and no weed seed production regardless of preplant weed management system. Early planting resulted in higher WU than delayed planting, averaging 289 and 221 mm, respectively, across management systems and years. The WUE of crop and total biomass did not differ among preplant weed management systems at harvest from the early planting date. Delayed planting resulted in decreased forage yield with high amounts of weed biomass and seed production, especially in ZT. A pre-emergence glyphosate application was not necessary for early-planted ZT forage barley. Early planting of herbicide-free barley for forage can be an excellent addition to northern Great Plains cropping systems as part of a multitactic approach for improved weed and water management.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 585-594 ◽  
Author(s):  
Terrance M. Hurley ◽  
George Frisvold

Herbicide-resistant weeds are the result of evolutionary processes that make it easy to think about the problem from a purely biological perspective. Yet, the act of weed management, guided by human production of food and fiber, drives this biological process. Thus, the problem is socioeconomic as well as biological. The purpose of this article is to explain how well-known socioeconomic phenomena create barriers to herbicide-resistance management and highlight important considerations for knocking down these barriers. The key message is that the multidimensional problem requires a multifaceted approach that recognizes differences among farmers; engages the regulatory, academic, extension, seed and chemical suppliers, and farmer communities; and aligns the diverse interests of the members of these communities with a common goal that benefits all—more sustainable weed management. It also requires an adaptive approach that transitions from moreuniform and costly standards and incentives, which can be effective in the near-term but are unsustainable, to more-targeted and less-costly approaches that are sustainable in the long term.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Donald C. Thill ◽  
Carol A. Mallory-Smith

Weeds spread through movement of seeds and vegetative reproductive propagules. Pollen movement can spread weedy traits, such as herbicide resistance, between related weed and crop species. Weed seeds can spread short or long distances by natural plant dehiscence mechanisms, wind, water, animals, and man&s activities. This symposium paper is a practical review of short-distance spread of weed seeds in and between nearby arable fields and noncrop lands, examining some of the causes of spread and subsequent effects on crop production. Pollen movement, as it affects the spread of herbicide resistance, also is considered a component of short-distance weed spread. Specific weed management options can be used to reduce man-caused weed seed spread within and between nearby fields, thus reducing potential crop yield losses. Long-term management will be more difficult for weed seed spread by natural dispersal mechanisms.


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 31-62 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Sarah M. Ward ◽  
David R. Shaw ◽  
Rick S. Llewellyn ◽  
Robert L. Nichols ◽  
...  

Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.


Sign in / Sign up

Export Citation Format

Share Document