scholarly journals Economic Barriers to Herbicide-Resistance Management

Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 585-594 ◽  
Author(s):  
Terrance M. Hurley ◽  
George Frisvold

Herbicide-resistant weeds are the result of evolutionary processes that make it easy to think about the problem from a purely biological perspective. Yet, the act of weed management, guided by human production of food and fiber, drives this biological process. Thus, the problem is socioeconomic as well as biological. The purpose of this article is to explain how well-known socioeconomic phenomena create barriers to herbicide-resistance management and highlight important considerations for knocking down these barriers. The key message is that the multidimensional problem requires a multifaceted approach that recognizes differences among farmers; engages the regulatory, academic, extension, seed and chemical suppliers, and farmer communities; and aligns the diverse interests of the members of these communities with a common goal that benefits all—more sustainable weed management. It also requires an adaptive approach that transitions from moreuniform and costly standards and incentives, which can be effective in the near-term but are unsustainable, to more-targeted and less-costly approaches that are sustainable in the long term.

1999 ◽  
Vol 13 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Michael J. Christoffers

Weed populations develop herbicide resistance when they evolve due to selection pressure. Mutations and gene flow contribute to genetic variability and provide resistant alleles. The speed of resistance gene frequency increase is determined by the inheritance of resistance alleles relative to wild-type susceptibility and is influenced by the interaction between gene expression and selection. The goal of herbicide resistance management is to minimize selection pressure while maintaining adequate weed control. However, the specific nature of each herbicide, weed, and resistance combination determines the practices that optimize undesirable selection pressure. Therefore, generalized management strategies should be recommended with caution and must not be mandated without thorough evaluation on a case-by-case basis.


Weed Science ◽  
2018 ◽  
Vol 67 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Eshagh Keshtkar ◽  
Roohollah Abdolshahi ◽  
Hamidreza Sasanfar ◽  
Eskandar Zand ◽  
Roland Beffa ◽  
...  

AbstractIn recent years, herbicide resistance has attracted much attention as an increasingly urgent problem worldwide. Unfortunately, most of that effort was focused on confirmation of resistance and characterization of the mechanisms of resistance. For management purposes, knowledge about biology and ecology of the resistant weed phenotypes is critical. This includes fitness of the resistant biotypes compared with the corresponding wild biotypes. Accordingly, fitness has been the subject of many studies; however, lack of consensus on the concept of fitness resulted in poor experimental designs and misinterpretation of the ensuing data. In recent years, methodological protocols for conducting proper fitness studies have been proposed; however, we think these methods should be reconsidered from a herbicide-resistance management viewpoint. In addition, a discussion of the inherent challenges associated with fitness cost studies is pertinent. We believe that the methodological requirements for fitness studies of herbicide-resistant weed biotypes might differ from those applied in other scientific disciplines such as evolutionary ecology and genetics. Moreover, another important question is to what extent controlling genetic background is necessary when the aim of a fitness study is developing management practices for resistant biotypes. Among the methods available to control genetic background, we suggest two approaches (single population and pedigreed lines) as the most appropriate methods to detect differences between resistant (R) and susceptible (S) populations and to derive herbicide-resistant weed management programs. Based on these two methods, we suggest two new approaches that we named the “recurrent single population” and “recurrent pedigreed lines” methods. Importantly, whenever the aim of a fitness study is to develop optimal resistance management, we suggest selecting R and S plants within a single population and evaluating all fitness components from seed to seed instead of measuring changes in the frequency of R and S alleles through multigenerational fitness studies.


2005 ◽  
Vol 75 (4) ◽  
pp. 71-77 ◽  
Author(s):  
W.E. Dyer

Herbicide-resistant crops offer a potentially valuable alternative strategy for weed management. If used appropriately, they may promote the use of agrichemicals more environmentally benign than the herbicides they replace, and provide producers with additional tools for controlling weeds. However, the controversy surrounding the development and use of these cultivars may limit and eventually prevent their widespread adoption. Concerns include: overuse of herbicides, escape of herbicide resistance genes from resistant cultivars into weedy relatives, genetic modifications for resistance conferring weediness to the cultivar (i.e. volunteer plants in subsequent crops), potential pleiotropic effects of genetic modifications for resistance, and selection of new herbicide-resistant weeds in the new herbicide regime. Of these concerns, the potential for selecting new resistant weeds may have the highest likelihood of affecting the long-term success of herbicide-resistant crops.


2006 ◽  
Vol 46 (4) ◽  
pp. 563 ◽  
Author(s):  
F. H. D'Emden ◽  
R. S. Llewellyn

Adoption of no-tillage sowing systems has increased rapidly in many Australian grain growing regions over the past decade. The extent of herbicide resistant weed populations in these regions has also increased over the same period. A survey of growers in the South and Western Australian cropping regions was conducted to identify opportunities for more effective tillage and weed-related extension. Trends in sowing system use are determined, as are growers’ perceptions of the long-term effects of no-tillage on herbicide costs, herbicide resistance, and soil erosion. The results suggest a major expansion in the adoption of no-tillage sowing in most South Australian cropping regions over the next 5 years, although growers expect increased herbicide costs in no-tillage systems and an increased risk of herbicide resistance. Herbicide resistance and weed control issues are the main reasons given for reducing no-tillage use. A key research and extension challenge is to develop and implement weed management strategies that are able to sustain long-term no-tillage use in a cropping environment where growers place a high value on the soil and production benefits of no-tillage, but over-reliance on herbicides can rapidly lead to resistance in major crop weeds.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 609-626 ◽  
Author(s):  
David E. Ervin ◽  
George B. Frisvold

When herbicide-resistant weeds are highly mobile across farms, delaying resistance becomes a common-pool resource (CPR) problem. In such situations, it is in the collective long-term interest of farmers to conserve an herbicide's usefulness. Yet, each farmer has an individual short-run incentive to use the herbicide without considering effects on resistance. This study considers the potential for community-based (CB) approaches to address problems of herbicide-resistant weeds. Here, growers actively participate in designing, financing, and implementing programs, usually in collaboration with industry, government, and universities. CB approaches have certain advantages over top-down regulatory or subsidy-based approaches. Scholars and practitioners have developed effective governance mechanisms for many CPRs that could aid in developing effective resistance management programs. Successful CB management programs for insect pest eradication and areawide invasive weed control offer additional lessons about the potential and challenges of such efforts. Lessons from these examples can inform the design and implementation of successful, voluntary programs for herbicide-resistance management. Key research, education, and outreach priorities to help implement successful CB programs are identified at the close.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 641-648 ◽  
Author(s):  
Claudio Rubione ◽  
Sarah M. Ward

The evolution of herbicide-resistant weeds is a major concern in the corn- and soybean-producing Pampas region of Argentina, where growers predominantly plant glyphosate-resistant crop varieties and depend heavily on glyphosate for weed control. Currently, 16 weed species in Argentina are resistant to one or more of three different herbicide mechanisms of action, and resistant weed populations continue to increase, posing a serious threat to agricultural production. Implementation of integrated weed management to address herbicide resistance faces significant barriers in Argentina, especially current land ownership and rental patterns in the Pampas. More than 60% of Pampas cropland is rented to tenants for periods that rarely exceed 1 yr, resulting in crop rotation being largely abandoned, and crop export taxes and quotas have further discouraged wheat and corn production in favor of continuous soybean production. In this paper we discuss ways to facilitate new approaches to weed management in Argentina, including legal and economic reforms and the formation of a national committee of stakeholders from public and private agricultural sectors.


EDIS ◽  
2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Shaun Sharpe ◽  
N S Boyd ◽  
Ramdas G Kanissery ◽  
Peter Dittmar

Herbicide resistance was historically not a significant issue in most horticultural crops because few herbicides were applied. Close proximity of agronomic crops and the loss of methyl bromide has led to a gradual increase in herbicide inputs and the increased occurrence of herbicide-resistant weeds in tomato fields. Very few herbicides are registered for tomato, and resistance is a major concern. This new 11-page publication of the UF/IFAS Horticultural Sciences Department provides a definition of herbicide resistance, explains how it develops, and provides management recommendations for tomato growers. It was written for growers and Extension agents, but the information may be of interest to anyone concerned about herbicide resistance in vegetable and small fruit crops. Written by Shaun M. Sharpe, Nathan S. Boyd, Ramdas G. Kanissery, and Peter J. Dittmar.https://edis.ifas.ufl.edu/hs1398


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 31-62 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Sarah M. Ward ◽  
David R. Shaw ◽  
Rick S. Llewellyn ◽  
Robert L. Nichols ◽  
...  

Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 627-640 ◽  
Author(s):  
Michael Barrett ◽  
Michael Barrett ◽  
John Soteres ◽  
David Shaw

Although the problem of herbicide resistance is not new, the widespread evolution of glyphosate resistance in weed species such as Palmer amaranth (Amaranthus palmeriS. Wats.), common waterhemp (Amaranthus rudisSauer), and kochia [Kochia scoparia(L.) Schrad.] raised awareness throughout the agricultural community of herbicide resistance as a problem. Glyphosate-resistant weeds resulted in the loss of a simple, single herbicide option to control a wide spectrum of weeds that gave efficacious and economical weed management in corn (Zea maysL.), soybean [Glycine max(L.) Merr.], and cotton (Gossypium hirsutumL.) crops engineered for tolerance to this herbicide and planted over widespread areas of the South and Midwest of the United States. Beyond these crops, glyphosate is used for vegetation management in other cropping systems and in noncrop areas across the United States, and resistance to this herbicide threatens its continued utility in all of these situations. This, combined with the development of multiple herbicide-resistant weeds and the lack of commercialization of herbicides with new mechanisms of action over the past years (Duke 2012), caused the weed science community to realize that stewardship of existing herbicide resources, extending their useful life as long as possible, is imperative. Further, while additional herbicide tolerance traits are being incorporated into crops, weed management in these crops will still be based upon using existing, old, herbicide chemistries.


2021 ◽  
pp. 1-20
Author(s):  
Jeff Werth ◽  
David Thormby ◽  
Michelle Keenan ◽  
James Hereward ◽  
Bhagirath Singh Chauhan

XtendFlexTM cotton with resistance to glyphosate, glufosinate and dicamba may become available in Australia. Resistance to these herbicides enables two additional modes of action to be applied in crop. The double knock strategy, typically glyphosate followed by paraquat, has been a successful tactic for control of glyphosate-resistant in fallow situations in Australia. Glufosinate is a contact herbicide, and may be useful as the second herbicide in a double knock for use in XtendFlexTM cotton crops. We tested the effectiveness of glufosinate applied at intervals of 1, 3, 7, and 10 d after initial applications of glyphosate, dicamba, clethodim and glyphosate mixtures with dicamba or clethodim on glyphosate-resistant and susceptible populations of Conyza bonariensis, Sonchus oleraceus, Chloris virgata, Chloris truncata and Echinochloa colona. Effective treatments for Conyza bonariensis with 100% control were dicamba and glyphosate+dicamba followed by glufosinate independent of the interval between applications. Sonchus oleraceus was effectively controlled in Experiment 1 by all treatments. However, in Experiment 2 effective treatments were dicamba and glyphosate+dicamba followed by glufosinate (99.3 – 100% control). Timing of the follow-up glufosinate did not affect the control achieved. Consistent control of Chloris virgata was achieved with glyphosate, clethodim or glyphosate+clethodim followed by glufosinate at 7 and 10 d intervals (99.7 – 100% control). Control of Chloris truncata was inconsistent. The best treatment for C. truncata was glyphosate+clethodim followed by glufosinate 10 d later (99.8 – 100% control). Echinochloa colona was effectively controlled with all treatments except for glyphosate on the glyphosate-resistant population. Additional in-crop use of glufosinate and dicamba should be beneficial for weed management in XtendFlexTM cotton crops, when utilising the double knock tactic with glufosinate. For effective herbicide resistance management, it is important that these herbicides be used in addition to, rather than substitution for, existing weed management tactics.


Sign in / Sign up

Export Citation Format

Share Document