Evaluation of Flumioxazin andS-metolachlor Rate and Timing for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato

2010 ◽  
Vol 24 (4) ◽  
pp. 495-503 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
Jonathan R. Schultheis ◽  
David W. Monks

Studies were conducted in 2007 and 2008 to determine the effect of flumioxazin andS-metolachlor on Palmer amaranth control and ‘Beauregard’ and ‘Covington’ sweetpotato. Flumioxazin at 0, 91, or 109 g ai ha−1was applied pretransplant 2 d before transplanting alone or followed by (fb)S-metolachlor at 0, 0.8, 1.1, or 1.3 kg ai ha−1PRE applied immediately after transplanting or 2 wk after transplanting (WAP). Flumioxazin fbS-metolachlor immediately after transplanting provided greater than 90% season-long Palmer amaranth control.S-metolachlor applied alone immediately after transplanting provided 80 to 93% and 92 to 96% control in 2007 and 2008, respectively. Flumioxazin fbS-metolachlor 2 WAP provided greater than 90% control in 2007 but variable control (38 to 79%) in 2008.S-metolachlor applied alone 2 WAP did not provide acceptable Palmer amaranth control. Control was similar for all rates ofS-metolachlor (0.8, 1.1, and 1.3 kg ha−1). In 2008, greater Palmer amaranth control was observed with flumioxazin at 109 g ha−1than with 91 g ha−1. Sweetpotato crop injury due to treatment was minimal (< 3%), and sweetpotato storage root length to width ratio was similar for all treatments in 2007 (2.5 for Beauregard) and 2008 (2.4 and 1.9 for Beauregard and Covington, respectively). Sweetpotato yield was directly related to Palmer amaranth control. Results indicate that flumioxazin pretransplant fbS-metolachlor after transplanting provides an effective herbicide program for control of Palmer amaranth in sweetpotato.

2018 ◽  
Vol 33 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Shawn C. Beam ◽  
Sushila Chaudhari ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Stephen L. Meyers ◽  
...  

AbstractStudies were conducted to determine the tolerance of sweetpotato and Palmer amaranth control to a premix of flumioxazin and pyroxasulfone pretransplant (PREtr) followed by (fb) irrigation. Greenhouse studies were conducted in a factorial arrangement of four herbicide rates (flumioxazin/pyroxasulfone PREtr at 105/133 and 57/72 g ai ha–1, S-metolachlor PREtr 803 g ai ha–1, nontreated) by three irrigation timings [2, 5, and 14 d after transplanting (DAP)]. Field studies were conducted in a factorial arrangement of seven herbicide treatments (flumioxazin/pyroxasulfone PREtr at 40/51, 57/72, 63/80, and 105/133 g ha–1, 107 g ha–1 flumioxazin PREtr fb 803 g ha–1S-metolachlor 7 to 10 DAP, and season-long weedy and weed-free checks) by three 1.9-cm irrigation timings (0 to 2, 3 to 5, or 14 DAP). In greenhouse studies, flumioxazin/pyroxasulfone reduced sweetpotato vine length and shoot and storage root fresh biomass compared to the nontreated check and S-metolachlor. Irrigation timing had no influence on vine length and root fresh biomass. In field studies, Palmer amaranth control was≥91% season-long regardless of flumioxazin/pyroxasulfone rate or irrigation timing. At 38 DAP, sweetpotato injury was≤37 and≤9% at locations 1 and 2, respectively. Visual estimates of sweetpotato injury from flumioxazin/pyroxasulfone were greater when irrigation timing was delayed 3 to 5 or 14 DAP (22 and 20%, respectively) compared to 0 to 2 DAP (7%) at location 1 but similar at location 2. Irrigation timing did not influence no.1, jumbo, or marketable yields or root length-to-width ratio. With the exception of 105/133 g ha–1, all rates of flumioxazin/pyroxasulfone resulted in marketable sweetpotato yield and root length-to-width ratio similar to flumioxazin fb S-metolachlor or the weed-free checks. In conclusion, flumioxazin/pyroxasulfone PREtr at 40/51, 57/72, and 63/80 g ha–1 has potential for use in sweetpotato for Palmer amaranth control without causing significant crop injury and yield reduction.


2012 ◽  
Vol 26 (3) ◽  
pp. 474-479 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
David W. Monks

Studies were conducted in 2008 and 2009 to determine the effect ofS-metolachlor rate and application time on sweetpotato cultivar injury and storage root shape under conditions of excessive moisture at the time of application.S-metolachlor at 1.1, 2.2, or 3.4 kg ai ha−1was applied immediately after transplanting or 2 wk after transplanting (WATP) to ‘Beauregard’, ‘Covington’, ‘DM02-180’, ‘Hatteras’, and ‘Murasaki-29’ sweetpotato. One and three d afterS-metolachlor application plots received 1.9 cm rainfall or irrigation.S-metolachlor applied immediately after transplanting resulted in increased sweetpotato stunting 4 and 12 WATP, decreased no. 1 and marketable sweetpotato yields, and decreased storage root length to width ratio compared with the nontreated check. Sweetpotato stunting, no. 1 and marketable yields, and storage root length to width ratio in treatments receivingS-metolachlor 2 WATP were similar to the nontreated check. In 2008, Covington and Hattaras stunting 12 WATP was greater at 2.2 and 3.4 kg ha−1(11 to 16%) than 1.1 kg ha−1(1 to 2%). In 2009,S-metolachlor at 3.4 kg ha−1was more injurious 4 WATP than 2.2 kg ha−1and 1.1 kg ha−1. While cultivar by treatment interactions did exist, injury, yield, and storage root length to width ratio trends were similar among all cultivars used in this study.


2007 ◽  
Vol 17 (1) ◽  
pp. 102-106
Author(s):  
Russell W. Wallace ◽  
John C. Hodges

Herbicides were applied pre-emergence (PRE) and early post-directed (EP-DIR) to determine their effects on crop injury and control of palmer amaranth (Amaranthus palmeri) and nutsedge (Cyperus spp.) in field-grown cannas (Canna ×generalis). Results indicate that PRE-applied s-metolachlor + pendimethalin was the most effective treatment for controlling palmer amaranth. All other PRE-applied treatments failed to adequately control palmer amaranth. While moderate and temporary stunting was visible, in general, no herbicides (except trifloxysulfuron) significantly decreased canna rhizome yields. EP-DIR s-metolachlor or s-metolachlor + pendimethalin did not improve nutsedge control unless halosulfuron was included in the tank mixture. Addition of halosulfuron did not increase crop injury or decrease canna yields but did significantly reduce the number of nutsedge tubers found in the canna rhizomes at harvest. Results suggest that all PRE-applied herbicides tested were safe for cannas, but the lack of adequate palmer amaranth and nutsedge control prohibits their use as stand-alone herbicides for canna production in the midsouth. Post-directing applications of halosulfuron significantly improved nutsedge control and reduced tuber infestation and, therefore, should be included in all nutsedge management programs for canna rhizome production.


2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


2021 ◽  
pp. 1-9
Author(s):  
Clint W. Beiermann ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
Robert Harveson ◽  
...  

Abstract A prepackaged mixture of desmedipham + phenmedipham was previously labeled for control of Amaranthus spp. in sugarbeet. Currently, there are no effective POST herbicide options to control glyphosate-resistant Palmer amaranth in sugarbeet. Sugarbeet growers are interested in using desmedipham + phenmedipham to control escaped Palmer amaranth. In 2019, a greenhouse experiment was initiated near Scottsbluff, NE, to determine the selectivity of desmedipham and phenmedipham between Palmer amaranth and sugarbeet. Three populations of Palmer amaranth and four sugarbeet hybrids were evaluated. Herbicide treatments consisted of desmedipham and phenmedipham applied singly or as mixtures at an equivalent rate. Herbicides were applied when Palmer amaranth and sugarbeet were at the cotyledon stage, or two true-leaf sugarbeet stage and when Palmer amaranth was 7 cm tall. The selectivity indices for desmedipham, phenmedipham, and desmedipham + phenmedipham were 1.61, 2.47, and 3.05, respectively, at the cotyledon stage. At the two true-leaf application stage, the highest rates of desmedipham and phenmedipham were associated with low mortality rates in sugarbeet, resulting in a failed response of death. The highest rates of desmedipham + phenmedipham caused a death response of sugarbeet; the selectivity index was 2.15. Desmedipham treatments resulted in lower LD50 estimates for Palmer amaranth compared to phenmedipham, indicating that desmedipham can provide greater levels of control for Palmer amaranth. However, desmedipham also caused greater injury in sugarbeet, producing lower LD50 estimates compared to phenmedipham. Desmedipham + phenmedipham provided 90% or greater control of cotyledon-size Palmer amaranth at a labeled rate but also caused high levels of sugarbeet injury. Neither desmedipham, phenmedipham, nor desmedipham + phenmedipham was able to control 7-cm tall Palmer amaranth at previously labeled rates. Results indicate that desmedipham + phenmedipham can only control Palmer amaranth if applied at the cotyledon stage and a high level of sugarbeet injury is acceptable.


2012 ◽  
Vol 39 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Gurinderbir S. Chahal ◽  
David L. Jordan ◽  
Barbara B. Shew ◽  
Rick L. Brandenburg ◽  
James D. Burton ◽  
...  

Abstract A range of fungicides and herbicides can be applied to control pests and optimize peanut yield. Experiments were conducted in North Carolina to define biological and physicochemical interactions when clethodim and 2,4-DB were applied alone or with selected fungicides. Pyraclostrobin consistently reduced large crabgrass [Digitaria sanguinalis (L.) Scop.] control by clethodim. Chlorothalonil and tebuconazole plus trifloxystrobin reduced large crabgrass control by clethodim in two of four experiments while prothioconazole plus tebuconazole and flutriafol did not affect control. Palmer amaranth [Amaranthus palmeri S. Wats] control by 2,4-DB was not affected by these fungicides. Although differences in spray solution pH were noted among mixtures of clethodim plus crop oil concentrate or 2,4-DB and fungicides, the range of pH was 4.40 to 4.92 and 6.72 to 7.20, respectively, across sampling times of 0, 6, 24, and 72 h after solution preparation. Permanent precipitates were formed when clethodim, crop oil concentrate, and chlorothalonil were co-applied at each sampling interval. Permanent precipitates were not observed when clethodim and crop oil concentrate were included with other fungicides or when 2,4-DB was mixed with fungicides. Significant positive correlations were noted for Palmer amaranth control by 2,4-DB and solution pH but not for clethodim and solution pH.


Weed Science ◽  
2003 ◽  
Vol 51 (4) ◽  
pp. 523-531 ◽  
Author(s):  
Rafael A. Massinga ◽  
Randall S. Currie ◽  
Todd P. Trooien

cftm ◽  
2021 ◽  
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Michael D. Boyette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document