Response of Sweetpotato Cultivars toS-metolachlor Rate and Application Time

2012 ◽  
Vol 26 (3) ◽  
pp. 474-479 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
David W. Monks

Studies were conducted in 2008 and 2009 to determine the effect ofS-metolachlor rate and application time on sweetpotato cultivar injury and storage root shape under conditions of excessive moisture at the time of application.S-metolachlor at 1.1, 2.2, or 3.4 kg ai ha−1was applied immediately after transplanting or 2 wk after transplanting (WATP) to ‘Beauregard’, ‘Covington’, ‘DM02-180’, ‘Hatteras’, and ‘Murasaki-29’ sweetpotato. One and three d afterS-metolachlor application plots received 1.9 cm rainfall or irrigation.S-metolachlor applied immediately after transplanting resulted in increased sweetpotato stunting 4 and 12 WATP, decreased no. 1 and marketable sweetpotato yields, and decreased storage root length to width ratio compared with the nontreated check. Sweetpotato stunting, no. 1 and marketable yields, and storage root length to width ratio in treatments receivingS-metolachlor 2 WATP were similar to the nontreated check. In 2008, Covington and Hattaras stunting 12 WATP was greater at 2.2 and 3.4 kg ha−1(11 to 16%) than 1.1 kg ha−1(1 to 2%). In 2009,S-metolachlor at 3.4 kg ha−1was more injurious 4 WATP than 2.2 kg ha−1and 1.1 kg ha−1. While cultivar by treatment interactions did exist, injury, yield, and storage root length to width ratio trends were similar among all cultivars used in this study.

2018 ◽  
Vol 33 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Shawn C. Beam ◽  
Sushila Chaudhari ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Stephen L. Meyers ◽  
...  

AbstractStudies were conducted to determine the tolerance of sweetpotato and Palmer amaranth control to a premix of flumioxazin and pyroxasulfone pretransplant (PREtr) followed by (fb) irrigation. Greenhouse studies were conducted in a factorial arrangement of four herbicide rates (flumioxazin/pyroxasulfone PREtr at 105/133 and 57/72 g ai ha–1, S-metolachlor PREtr 803 g ai ha–1, nontreated) by three irrigation timings [2, 5, and 14 d after transplanting (DAP)]. Field studies were conducted in a factorial arrangement of seven herbicide treatments (flumioxazin/pyroxasulfone PREtr at 40/51, 57/72, 63/80, and 105/133 g ha–1, 107 g ha–1 flumioxazin PREtr fb 803 g ha–1S-metolachlor 7 to 10 DAP, and season-long weedy and weed-free checks) by three 1.9-cm irrigation timings (0 to 2, 3 to 5, or 14 DAP). In greenhouse studies, flumioxazin/pyroxasulfone reduced sweetpotato vine length and shoot and storage root fresh biomass compared to the nontreated check and S-metolachlor. Irrigation timing had no influence on vine length and root fresh biomass. In field studies, Palmer amaranth control was≥91% season-long regardless of flumioxazin/pyroxasulfone rate or irrigation timing. At 38 DAP, sweetpotato injury was≤37 and≤9% at locations 1 and 2, respectively. Visual estimates of sweetpotato injury from flumioxazin/pyroxasulfone were greater when irrigation timing was delayed 3 to 5 or 14 DAP (22 and 20%, respectively) compared to 0 to 2 DAP (7%) at location 1 but similar at location 2. Irrigation timing did not influence no.1, jumbo, or marketable yields or root length-to-width ratio. With the exception of 105/133 g ha–1, all rates of flumioxazin/pyroxasulfone resulted in marketable sweetpotato yield and root length-to-width ratio similar to flumioxazin fb S-metolachlor or the weed-free checks. In conclusion, flumioxazin/pyroxasulfone PREtr at 40/51, 57/72, and 63/80 g ha–1 has potential for use in sweetpotato for Palmer amaranth control without causing significant crop injury and yield reduction.


2010 ◽  
Vol 24 (4) ◽  
pp. 495-503 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
Jonathan R. Schultheis ◽  
David W. Monks

Studies were conducted in 2007 and 2008 to determine the effect of flumioxazin andS-metolachlor on Palmer amaranth control and ‘Beauregard’ and ‘Covington’ sweetpotato. Flumioxazin at 0, 91, or 109 g ai ha−1was applied pretransplant 2 d before transplanting alone or followed by (fb)S-metolachlor at 0, 0.8, 1.1, or 1.3 kg ai ha−1PRE applied immediately after transplanting or 2 wk after transplanting (WAP). Flumioxazin fbS-metolachlor immediately after transplanting provided greater than 90% season-long Palmer amaranth control.S-metolachlor applied alone immediately after transplanting provided 80 to 93% and 92 to 96% control in 2007 and 2008, respectively. Flumioxazin fbS-metolachlor 2 WAP provided greater than 90% control in 2007 but variable control (38 to 79%) in 2008.S-metolachlor applied alone 2 WAP did not provide acceptable Palmer amaranth control. Control was similar for all rates ofS-metolachlor (0.8, 1.1, and 1.3 kg ha−1). In 2008, greater Palmer amaranth control was observed with flumioxazin at 109 g ha−1than with 91 g ha−1. Sweetpotato crop injury due to treatment was minimal (< 3%), and sweetpotato storage root length to width ratio was similar for all treatments in 2007 (2.5 for Beauregard) and 2008 (2.4 and 1.9 for Beauregard and Covington, respectively). Sweetpotato yield was directly related to Palmer amaranth control. Results indicate that flumioxazin pretransplant fbS-metolachlor after transplanting provides an effective herbicide program for control of Palmer amaranth in sweetpotato.


2003 ◽  
Vol 128 (6) ◽  
pp. 856-863 ◽  
Author(s):  
A.D. Bryan ◽  
J.R. Schultheis ◽  
Z. Pesic-VanEsbroeck ◽  
G.C. Yencho

To determine the effects of Sweet potato feathery mottle virus (SPFMV), and possibly other newly described potyviruses, on sweetpotato yield and storage root appearance, virus-indexed `Beauregard' and `Hernandez' mericlones testing free of known viruses were compared with virus-infected mericlones in two separate experiments over two years. The experiments were arranged in a split-plot, randomized, complete-block design with the initial presence (VI+) or absence (VI-) of SPFMV as the whole plot factor and mericlone as the subplot factor. Plants were monitored weekly for symptoms of SPFMV and vine samples were taken for virus-indexing on Ipomoea setosa. Additional testing for selected sweetpotato viruses was done using a nitrocellulose membrane enzyme-linked immunosorbant assay. SPFMV was the only virus detected in the study, using available testing methodologies. Field monitoring indicated that §100% of the VI-plants were reinfected with SPFMV by 9 weeks after planting. The presence of virus before planting reduced yields of No. 1 roots by 26% and decreased overall appearance ratings for the three `Beauregard' mericlones. In addition, VI+ planting materials resulted in increased storage root length and reduced storage root width of both cultivars leading to increased storage root length/diameter ratios, further detracting from overall storage root appearance. The results of this study demonstrate that SPFMV contributes to cultivar decline in sweetpotato. However, the interaction of SPFMV with other newly described potyviruses, which may result in synergistic negative effects on sweetpotato yield and quality, needs further research.


2021 ◽  
Vol 22 (9) ◽  
pp. 4826
Author(s):  
Yang Gao ◽  
Zhonghou Tang ◽  
Houqiang Xia ◽  
Minfei Sheng ◽  
Ming Liu ◽  
...  

A field experiment was established to study sweet potato growth, starch dynamic accumulation, key enzymes and gene transcription in the sucrose-to-starch conversion and their relationships under six K2O rates using Ningzishu 1 (sensitive to low-K) and Xushu 32 (tolerant to low-K). The results indicated that K application significantly improved the biomass accumulation of plant and storage root, although treatments at high levels of K, i.e., 300–375 kg K2O ha−1, significantly decreased plant biomass and storage root yield. Compared with the no-K treatment, K application enhanced the biomass accumulation of plant and storage root by 3–47% and 13–45%, respectively, through promoting the biomass accumulation rate. Additionally, K application also enhanced the photosynthetic capacity of sweet potato. In this study, low stomatal conductance and net photosynthetic rate (Pn) accompanied with decreased intercellular CO2 concentration were observed in the no-K treatment at 35 DAT, indicating that Pn was reduced mainly due to stomatal limitation; at 55 DAT, reduced Pn in the no-K treatment was caused by non-stomatal factors. Compared with the no-K treatment, the content of sucrose, amylose and amylopectin decreased by 9–34%, 9–23% and 6–19%, respectively, but starch accumulation increased by 11–21% under K supply. The activities of sucrose synthetase (SuSy), adenosine-diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (SSS) and the transcription of Susy, AGP, SSS34 and SSS67 were enhanced by K application and had positive relationships with starch accumulation. Therefore, K application promoted starch accumulation and storage root yield through regulating the activities and genes transcription of SuSy, AGPase and SSS in the sucrose-to-starch conversion.


2020 ◽  
Vol 9 (7) ◽  
pp. e130973911
Author(s):  
Roberto Cleiton Fernandes de Queiroga ◽  
Zaqueu Lopes da Silva ◽  
Odair Honorato Oliveira de ◽  
Elidayane da Nóbrega Santos ◽  
Higínio Luan Oliveira Silva ◽  
...  

The objective of this study was to evaluate the productivity and quality of melon fruits as a function of the dose and time of application of biostimulant in the conditions of the semi-arid region of Paraíba. The experiment was carried out at the Federal University of Campina Grande, campus of Pombal - PB, Brazil, in a randomized block design in a 4 x 5 split plot scheme, with doses of biostimulant (0; 0.5; 1.0; 1, 5 and 2.0 L ha-1) and in the subset of the biostimulant application times (15; 20; 25 and 30 days before harvest - DAC), in four replications. Characteristics related to fruit production and quality were evaluated. There was no interaction between the factors of dose and application time of the biostimulant in any of the evaluated characteristics. Thus, the highest estimated values of number of fruits per plant, fruit mass and total melon production were obtained with the application of doses ranging from 0.9 to 1.5 L ha-1 and at the time of application it varied from 22,5 to 23.6 DAC. The content of soluble solids increased 5.5% when the biostimulant dose of 2.0 L ha-1 was used and 4.4% when the product was applied 15 days before harvest.


Akta Agrosia ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 13-21
Author(s):  
Dewi Rahmawati ◽  
Djamilah Djamilah ◽  
Bilman W Simanihuruk

Crocidolomia binotalis Zell is an important pest in Brassicaceae vegetable crops. Vegetable insecticide is one potential alternative to controlling the pest. This study aims to determine the application time of noni fruit extract and to determine the effective concentration of noni fruit extract as a vegetable insecticide in controlling C. binotalis larva on cabbage plants in the field. this study used a Completely Randomized Design (RAL) consisting of two treatment factors and four replications. The first factor is the concentration of extract (5 ppm, 10 ppm, 15 ppm and 20 ppm) and the second factor is the time of application of vegetable pesticide before the pest is invested (W1) and after the pest is invested (W2). So there are 32 units of experiments and 4 units of experiments added as control. The results showed, noni fruit extract had no significant effect on mortality of C. binotalis larvae. The highest mortality rate is at 100% K2 (10ppm) concentration at the time of application before the pest is invested (W1). The interaction had significant effect on the wet weight of the plant canopy but had no significant effect on the mortality of the pest, the intensity of the attack, the percentage of pupa formed, and the present percentage of imago.


1976 ◽  
Vol 12 (4) ◽  
pp. 385-394 ◽  
Author(s):  
D. O. Huett ◽  
G. H. O'Neill

SUMMARYThe growth and development of a short-season sweet potato (Nemagold) and a long-season cultivar (White Maltese) were compared quantitatively in sub-tropical Australia and also with growth data for Nemagold in a temperate environment. Total and storage root dry matter production (DMP) followed autocatalytic equations, with similar whole plant DMP from planting to week 25 for both cultivars but plateauing (at 90% of asymptotic weight) at week 23 for Nemagold (448 g) with favourable temperatures and at week 38 for White Maltese (813 g) when temperatures were unfavourable. Storage root DMP of Nemagold plateaued at week 23 (246 g) and at week 36 (219 g) for White Maltese. Data are given on other attributes and on phasic development.


2018 ◽  
Vol 3 (1) ◽  
pp. 644-651
Author(s):  
A.O. Adekiya ◽  
C.M. Aboyeji ◽  
T.M. Agbede ◽  
O. Dunsin ◽  
O.T.V. Adebiyi

Abstract Micro-nutrients especially zinc can not only increase the yield of sweet potato but can also improve the quality of tubers. Hence, experiments were carried out in 2015 and 2016 cropping seasons to determine the impact of various levels of ZnSO4 fertilizer on soil chemical properties, foliage and storage root yields and proximate qualities of sweet potato (Ipomoea batatas L.). The experiments consisted of 5 levels (0, 5, 10, 15 and 20 kg ha-1) of ZnSO4 fertilizer. These were arranged in a randomized complete block design and replicated three times. ZnSO4 increased (with the exception of P) soil chemical properties compared with the control. N, K, Ca, Mg and Zn were increased up to the 20 kg ha-1 ZnSO4 level in both years. ZnSO4 reduced P concentrations in soil as the level increased. For sweet potato performance, 5 kg ha-1 ZnSO4 fertilizer had the highest values of foliage yield (vine length and vine weight) and storage root yield. Using the mean of the two years and compared with the control, ZnSO4 fertilizer at 5 kg ha-1 increased storage root yield of sweet potato by 17.4%. On fitting the mean storage root yield data of the two years with a cubic equation, the optimum rate of Zn for sweet potato was found to be 3.9 kg ha-1 to achieve the maximum sweet potato yield. In this study, relative to the control, ZnSO4 fertilizer increased moisture and decreased the fibre contents of sweet potato. There were no consistent patterns of variation between the 5, 10, 15 and 20 kg ha-1 ZnSO4 treatments for proximate qualities except that the highest values of fat, protein, carbohydrate and ash was at 5 kg ha-1 ZnSO4.


2009 ◽  
Vol 20 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Rita Sarmiento Villena ◽  
Livia Maria Andaló Tenuta ◽  
Jaime Aparecido Cury

This in situ crossover and blind study was conducted to investigate the effect of professional acidulated phosphate fluoride (APF) gel application time on the subsequent inhibition of enamel demineralization. During 3 phases of 28 days each, 15 volunteers wore palatal appliances containing 4 enamel blocks, which were subjected to 3 treatment groups: not treated (control) and pre-treated with APF gel for 1 or 4 min. Dental plaque was allowed to accumulate on the blocks and the appliances were immersed in 10% sucrose solution 3 times a day simulating a cariogenic challenge. After each phase, the blocks were removed to evaluate enamel demineralization and concentration of fluoride (F) remaining after the cariogenic challenge. F formed on enamel was determined in additional enamel blocks subjected only to APF gel application. APF gel was efficient in reducing enamel demineralization (p<0.05), irrespective of the application time (p>0.05). Also, the concentration of the F formed and retained on enamel was significantly higher after APF gel application (p<0.05), but the effect of time of application was not statistically significant (p>0.05). The results suggest that APF application for either 1 or 4 min is equally efficient to increase F concentration in enamel and reduce enamel demineralization.


Sign in / Sign up

Export Citation Format

Share Document