Tillage Affects Imazamox Carryover in Yellow Mustard

2012 ◽  
Vol 26 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Jonquil Rood ◽  
Joan Campbell ◽  
Donn Thill ◽  
Dan Ball ◽  
Larry Bennett ◽  
...  

Farmers grow crops in the dryland region of the Pacific Northwest (PNW) using tillage practices ranging from moldboard plowing to no-tillage. The objective of this study was to determine the effect of tillage on persistence of imazamox herbicide in intermediate and high precipitation zones of the inland PNW. Along with a nontreated control, imazamox was applied to imidazolinone-tolerant winter wheat in the fall and spring at one, two, and three times the maximum labeled rate at locations near Genesee, ID, Davenport, WA, and Pendleton, OR. Moldboard plow, chisel plow, and no-till tillage treatments were implemented soon after wheat harvest and yellow mustard was planted the following season to determine crop response. Experiments were conducted at each location in 2005 to 2007 and 2006 to 2008. There were significant location by year and year and location interactions. There was no significant tillage by imazamox rate interaction, except at Pendleton in year 2, for all measured yellow mustard responses (crop injury, biomass, and yield). Genesee was colder than Pendleton and had more precipitation than Davenport, resulting in more injury to yellow mustard at Genesee than at Pendleton but less than at Davenport. Davenport had greater injury than the other two locations, likely due to lower soil pH, higher organic matter (OM), and cooler, drier climate, which allowed imazamox to persist longer in the soil. Overall, Pendleton had the least yellow mustard injury, which likely was related to its warmer, wetter climate and the concomitant rapid soil dissipation of imazamox. Tillage did not reduce the persistence of imazamox. Yellow mustard had the lowest injury and had greater mature biomass and seed yield in no-till seeded plots when averaged across imazamox rates compared to moldboard and chisel-plowed plots.

2021 ◽  
Vol 5 ◽  
Author(s):  
Cedric Habiyaremye ◽  
Kurtis L. Schroeder ◽  
John P. Reganold ◽  
David White ◽  
Daniel Packer ◽  
...  

Barley (Hordeum vulgare L.) has a storied history as a food crop, and it has long been a dietary staple of peoples in temperate climates. Contemporary research studies have focused mostly on hulled barley for malt and animal feed. As such, nitrogen (N) and seeding rate agronomic data for naked food barley are lacking. In this study, we evaluated the effects of N on ß-glucan and protein content, and N and seeding rate on phenotypic characteristics of naked food barley, including grain yield, emergence, plant height, days to heading, days to maturity, test weight, percent plump kernels, and percent thin kernels. Experiments were conducted at two no-till farms, located in Almota, WA, and Genesee, ID, in the Palouse region of the Pacific Northwest from 2016 to 2018. The experiment comprised two varieties (“Havener” and “Julie”), employed N rates of 0, 62, 95, 129, and 162 kg N ha−1, and seeding rates of 250, 310, and 375 seeds/m−2. Increased N fertilization rate was shown to significantly increase all response variables, except β-glucan content of the variety Julie, days to heading, test weight, and percent plump and thin kernels. Increased N fertilization resulted in higher mean grain yield of Havener and Julie in both Almota and Genesee up to 95 kg N ha−1. Havener had higher yields (3,908 kg N ha−1) than Julie (3,099 kg N ha−1) across locations and years. Julie had higher β-glucan (8.2%) and protein (12.6%) content compared to Havener (β-glucan = 6.6%; protein = 9.1%). Our results indicate that β-glucan content is associated with genotype, environmental, and agronomic factors in dryland cropping systems of the Palouse.


2014 ◽  
Vol 60 (No. 7) ◽  
pp. 309-313 ◽  
Author(s):  
Chen XW ◽  
Liang AZ ◽  
Jia SX ◽  
Zhang XP ◽  
Wei SC

Soil management is aimed at the maintenance of optimal soil physical quality for crop production. In order to explore the effects of tillage practices on soil physical properties, a study was conducted to compare the effects of no tillage (NT), moldboard plow (MP) and ridge tillage (RT) on soil bulk density (BD), soil penetration resistance (SPR), soil water content (SWC), soil macroporosity (MAC) and soil air-filled porosity (AFP) in Northeast China. Results showed that both NT and RT led to significant BD increment than MP at 0&ndash;20 cm (P &lt; 0.05). Compared with MP, NT and RT increased SPR at the depths of 2.5&ndash;17.5 cm (P &lt; 0.05). SWC of 0&ndash;10 cm layer was significantly higher in NT and RT than MP soils (P &lt; 0.05). NT showed a significantly lower MAC than MP and RT at 0&ndash;20 cm soil depths (P &lt; 0.05). All AFP values were above the limit of 0.10 cm<sup>3</sup>/cm<sup>3</sup> under all tillage treatments. RT improved the soil physical quality as evidenced by decreased BD and SPR, and increased SWC, MAC and AFP relative to NT.


1998 ◽  
Vol 12 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Frank Forcella

Foxtail emergence patterns were evaluated in spring wheat under three tillage regimes, moldboard plow, chisel plow, and no-till, and three wheat planting dates. The first planting date was as soon as feasible in spring, and the second and third planting dates averaged 9 and 17 d later. Foxtail emergence patterns and seedbank density were evaluated each year for three consecutive years. Green foxtail was the dominant weed species. Tillage regime did not influence initial percent emergence of foxtail. Subsequent percent foxtail emergence was sometimes lower in no-till or chisel plow than in moldboard plow regimes until emergence approached 100%. By the third year, total foxtail plant emergence was greater in no-till and chisel plow than in moldboard plow and also greater in no-till than chisel plow. Earlier planting generally increased percent foxtail emergence until midseason. At 22 d after planting, average emergence of foxtail was 48, 67, and 81% for planting dates one, two, and three, respectively. Delayed planting increased rate of foxtail emergence but decreased density of emerged seedlings. Producers adopting chisel plow or no-till systems can expect to see greater foxtail infestations than in moldboard plow systems. Subsequently, more extensive weed management in reduced tillage systems will be needed to prevent heavy foxtail infestations. Delaying wheat planting may be a viable option for foxtail management through reduced plant densities and more simultaneous emergence patterns.


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Frank Forcella

Emergence patterns of foxtail in spring wheat following soybean were evaluated for three seeding dates and three tillage regimes. Cumulative foxtail emergence, as a percentage of total plants emerged in the growing season, was generally not influenced by tillage regime throughout most of the emergence period, but when differences occurred, emergence was lower with no-till than with moldboard plow. Foxtail seedling densities were greater in no-till and chisel plow than in moldboard plow. Weed biomass and wheat yields were not affected by tillage regime. Delaying wheat seeding reduced foxtail percent emergence and emerged seedling density. Differences in emergence patterns of foxtail were attributable to thermal accumulation after seeding. Wheat yield was not influenced by seeding date in 2 of 3 yr.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 389-394 ◽  
Author(s):  
W. F. Schillinger ◽  
T. C. Paulitz

The soilborne fungus Rhizoctonia solani AG-8 is a major concern for farmers who practice no-till in the inland Pacific Northwest of the United States. Bare patches caused by Rhizoctonia spp. first appeared in 1999 during year 3 of a 15-year no-till cropping systems experiment near Ritzville, WA (269 mm of annual precipitation). The extent and pattern of patches were mapped each year from 1999 to 2012 at the 8-ha study site with a backpack-mounted global positioning system equipped with mapping software. Bare patches appeared in winter and spring wheat (SW; Triticum aestivum), spring barley (SB; Hordeum vulgare), yellow mustard (Brassica hirta), and safflower (Carthamus tinctorius). At its peak in years 5 to 7, bare patches occupied as much as 18% of total plot area in continuous annual monoculture SW. The area of bare patches began to decline in year 8 and reached near zero levels by year 11. No measurable patches were present in years 12 to 15. Patch area was significantly greater in continuous SW compared with SW grown in a 2-year rotation with SB. Additionally, the 15-year average grain yield for SW in rotation with SB was significantly greater than for continuous SW. Russian thistle (Salsola tragus), a troublesome broadleaf weed with a fast-growing tap root, was the only plant that grew within patches. This article reports the first direct evidence of natural suppression of Rhizoctonia bare patch with long-term no-till in North America. This suppression also developed in a rotation that contained broadleaf crops (yellow mustard and safflower) in all but 5 years of the study, and the suppression was maintained when safflower was added back to the rotation.


2013 ◽  
Vol 53 ◽  
pp. 132-138 ◽  
Author(s):  
L.S. Sullivan ◽  
F.L. Young ◽  
R.W. Smiley ◽  
J.R. Alldredge

2000 ◽  
Vol 80 (2) ◽  
pp. 455-457 ◽  
Author(s):  
Clarence J. Swanton ◽  
Anil Shrestha ◽  
Stevan Z. Knezevic ◽  
Robert C. Roy ◽  
Bonnie R. Ball-Coelho

The vertical distribution of weed seeds in the seedbank of a sandy soil under three tillage systems (moldboard plow, chisel plow, and no-till) was estimated by a seedling-emergence method. The vertical distribution of the weed seedbank differed with tillage type and depth of tillage. The no-till system had the largest portion (90%) of the seedbank in the 0- to 5-cm layer. Chisel plowing distributed most of the seeds (66%) in the 5- to 10-cm layer. Moldboard plowing concentrated 71% of the seeds at the 10- to 15-cm depth. Our results suggest that the vertical distribution of the weed seedbank will be influenced by tillage type, depth of tillage, and soil type. Key words: Soil structure, moldboard plow, chisel plow, no-till


2014 ◽  
Vol 28 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Nevin C. Lawrence ◽  
Ian C. Burke

Rattail fescue is a problematic weed for small grain producers in the Pacific Northwest when no-till production practices are used. Pyroxsulam and pyroxasulfone are two herbicides not previously evaluated for control of rattail fescue. Pyroxasulfone provided levels of control (> 74%) similar to flufenacet. Pyroxsulam did not consistently control (21 to 71%) rattail fescue. Rattail fescue biomass was reduced by pyroxasulfone and flufenacet compared to the nontreated control. Effective consistent rattail fescue control was only achieved where PRE herbicides were used. When managing rattail fescue, PRE herbicides pyroxasulfone and flufenacet plus metribuzin are essential components of an integrated management strategy.


1998 ◽  
Vol 78 (2) ◽  
pp. 363-370 ◽  
Author(s):  
David C. Hooker ◽  
Tony J. Vyn ◽  
Clarence J. Swanton

White bean producers often perceive that increased herbicide inputs are required with the adoption of conservation tillage. Acceptance of conservation tillage systems for this crop would increase if effective weed management practices were assured. In 1991 and 1992, various weed management strategies were evaluated in white bean (Phaseolus vulgaris L.) grown with three tillage systems at two sites in southern Ontario. Experiments were newly established each year following corn harvested for grain. Primary tillage treatments were fall moldboard plowing, fall chisel plowing, and first-year no-till. Combinations of mechanical weeding, metobromuron [3–(4–bromophenyl)–1–methoxy–1–methylurea] herbicide broadcasted at two rates, and a band application of the herbicide were investigated in each tillage system. Timely rotary hoeing reduced weed numbers in moldboard plow and chisel plow treatments, but was not effective in no-till. Weeds were adequately controlled in all tillage systems with mechanical treatments following a herbicide either broadcasted at a reduced rate or banded over the crop row. Metobromuron broadcasted at the full recommended rate alone controlled weeds in no-till; in contrast, the degree of weed control was poor without mechanical cultivation in both moldboard and chisel plow systems. Integrating mechanical and chemical control methods was more beneficial in tilled systems. Overall weed populations were lower in first-year no-till than moldboard plow or chisel plow tillage systems. White bean producers who adopt conservation tillage under conditions similar to those investigated can be assured of effective weed management alternatives as well as bean yields equivalent to conventional tillage. Key words: Conservation tillage, weed management, rotary hoe, inter-row cultivation, Phaseolus vulgaris


Sign in / Sign up

Export Citation Format

Share Document