Foxtail (Setariaspp.) seedling dynamics in spring wheat (Triticum aestivum) are influenced by seeding date and tillage regime

Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Frank Forcella

Emergence patterns of foxtail in spring wheat following soybean were evaluated for three seeding dates and three tillage regimes. Cumulative foxtail emergence, as a percentage of total plants emerged in the growing season, was generally not influenced by tillage regime throughout most of the emergence period, but when differences occurred, emergence was lower with no-till than with moldboard plow. Foxtail seedling densities were greater in no-till and chisel plow than in moldboard plow. Weed biomass and wheat yields were not affected by tillage regime. Delaying wheat seeding reduced foxtail percent emergence and emerged seedling density. Differences in emergence patterns of foxtail were attributable to thermal accumulation after seeding. Wheat yield was not influenced by seeding date in 2 of 3 yr.

1998 ◽  
Vol 12 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Frank Forcella

Foxtail emergence patterns were evaluated in spring wheat under three tillage regimes, moldboard plow, chisel plow, and no-till, and three wheat planting dates. The first planting date was as soon as feasible in spring, and the second and third planting dates averaged 9 and 17 d later. Foxtail emergence patterns and seedbank density were evaluated each year for three consecutive years. Green foxtail was the dominant weed species. Tillage regime did not influence initial percent emergence of foxtail. Subsequent percent foxtail emergence was sometimes lower in no-till or chisel plow than in moldboard plow regimes until emergence approached 100%. By the third year, total foxtail plant emergence was greater in no-till and chisel plow than in moldboard plow and also greater in no-till than chisel plow. Earlier planting generally increased percent foxtail emergence until midseason. At 22 d after planting, average emergence of foxtail was 48, 67, and 81% for planting dates one, two, and three, respectively. Delayed planting increased rate of foxtail emergence but decreased density of emerged seedlings. Producers adopting chisel plow or no-till systems can expect to see greater foxtail infestations than in moldboard plow systems. Subsequently, more extensive weed management in reduced tillage systems will be needed to prevent heavy foxtail infestations. Delaying wheat planting may be a viable option for foxtail management through reduced plant densities and more simultaneous emergence patterns.


2012 ◽  
Vol 26 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Jonquil Rood ◽  
Joan Campbell ◽  
Donn Thill ◽  
Dan Ball ◽  
Larry Bennett ◽  
...  

Farmers grow crops in the dryland region of the Pacific Northwest (PNW) using tillage practices ranging from moldboard plowing to no-tillage. The objective of this study was to determine the effect of tillage on persistence of imazamox herbicide in intermediate and high precipitation zones of the inland PNW. Along with a nontreated control, imazamox was applied to imidazolinone-tolerant winter wheat in the fall and spring at one, two, and three times the maximum labeled rate at locations near Genesee, ID, Davenport, WA, and Pendleton, OR. Moldboard plow, chisel plow, and no-till tillage treatments were implemented soon after wheat harvest and yellow mustard was planted the following season to determine crop response. Experiments were conducted at each location in 2005 to 2007 and 2006 to 2008. There were significant location by year and year and location interactions. There was no significant tillage by imazamox rate interaction, except at Pendleton in year 2, for all measured yellow mustard responses (crop injury, biomass, and yield). Genesee was colder than Pendleton and had more precipitation than Davenport, resulting in more injury to yellow mustard at Genesee than at Pendleton but less than at Davenport. Davenport had greater injury than the other two locations, likely due to lower soil pH, higher organic matter (OM), and cooler, drier climate, which allowed imazamox to persist longer in the soil. Overall, Pendleton had the least yellow mustard injury, which likely was related to its warmer, wetter climate and the concomitant rapid soil dissipation of imazamox. Tillage did not reduce the persistence of imazamox. Yellow mustard had the lowest injury and had greater mature biomass and seed yield in no-till seeded plots when averaged across imazamox rates compared to moldboard and chisel-plowed plots.


2000 ◽  
Vol 80 (2) ◽  
pp. 455-457 ◽  
Author(s):  
Clarence J. Swanton ◽  
Anil Shrestha ◽  
Stevan Z. Knezevic ◽  
Robert C. Roy ◽  
Bonnie R. Ball-Coelho

The vertical distribution of weed seeds in the seedbank of a sandy soil under three tillage systems (moldboard plow, chisel plow, and no-till) was estimated by a seedling-emergence method. The vertical distribution of the weed seedbank differed with tillage type and depth of tillage. The no-till system had the largest portion (90%) of the seedbank in the 0- to 5-cm layer. Chisel plowing distributed most of the seeds (66%) in the 5- to 10-cm layer. Moldboard plowing concentrated 71% of the seeds at the 10- to 15-cm depth. Our results suggest that the vertical distribution of the weed seedbank will be influenced by tillage type, depth of tillage, and soil type. Key words: Soil structure, moldboard plow, chisel plow, no-till


1998 ◽  
Vol 78 (2) ◽  
pp. 363-370 ◽  
Author(s):  
David C. Hooker ◽  
Tony J. Vyn ◽  
Clarence J. Swanton

White bean producers often perceive that increased herbicide inputs are required with the adoption of conservation tillage. Acceptance of conservation tillage systems for this crop would increase if effective weed management practices were assured. In 1991 and 1992, various weed management strategies were evaluated in white bean (Phaseolus vulgaris L.) grown with three tillage systems at two sites in southern Ontario. Experiments were newly established each year following corn harvested for grain. Primary tillage treatments were fall moldboard plowing, fall chisel plowing, and first-year no-till. Combinations of mechanical weeding, metobromuron [3–(4–bromophenyl)–1–methoxy–1–methylurea] herbicide broadcasted at two rates, and a band application of the herbicide were investigated in each tillage system. Timely rotary hoeing reduced weed numbers in moldboard plow and chisel plow treatments, but was not effective in no-till. Weeds were adequately controlled in all tillage systems with mechanical treatments following a herbicide either broadcasted at a reduced rate or banded over the crop row. Metobromuron broadcasted at the full recommended rate alone controlled weeds in no-till; in contrast, the degree of weed control was poor without mechanical cultivation in both moldboard and chisel plow systems. Integrating mechanical and chemical control methods was more beneficial in tilled systems. Overall weed populations were lower in first-year no-till than moldboard plow or chisel plow tillage systems. White bean producers who adopt conservation tillage under conditions similar to those investigated can be assured of effective weed management alternatives as well as bean yields equivalent to conventional tillage. Key words: Conservation tillage, weed management, rotary hoe, inter-row cultivation, Phaseolus vulgaris


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 314-322 ◽  
Author(s):  
David R. Clements ◽  
Diane L. Benoit ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

Weed seed return and seedbank composition, with particular reference to common lambsquarters, were studied in four tillage systems established on a site near Fingal, Ontario. The tillage treatments were moldboard plow, chisel plow, ridge-till, and no-till. The cropping system was a cornsoybean rotation. Tillage effects on weed population composition were assessed after all weed control measures had been implemented. More than 60% of the weed seedbank was concentrated in the upper 5 cm of soil in chisel plow and no-till. The seedbank of the moldboard plow system was more uniformly distributed over depth and larger than the other systems. Common lambsquarters comprised more than 50% of the seedbank in all systems except ridge-till, but only dominated the aboveground weed population in chisel plow. Seedbank populations of common lambsquarters with moldboard plowing were greater than those with ridge-till and no-till, and chisel plow seedbank populations were greater than those in ridge-till. Chisel and moldboard plow systems generally had higher aboveground plant populations of common lambsquarters than the other two systems. Seed production per plant by common lambsquarters was equivalent among the four systems, but estimated seed production per unit area was higher in moldboard plow and chisel plow systems than in the other systems. Populations of common lambsquarters and similar species may produce more seeds and persist in moldboard plow and chisel plow systems; these weeds may produce fewer seeds per unit area and be easier to manage in no-till and ridge-till systems.


2013 ◽  
Vol 27 (3) ◽  
pp. 502-508 ◽  
Author(s):  
Michael H. Ostlie ◽  
Kirk A. Howatt

Downy brome is one of the leading plant pests in winter wheat and no-till spring wheat in many areas of the country. It has recently been studied in North Dakota where it is emerging as a serious crop competitor. Downy brome plants produced up to 60 tillers and more than 7,500 seeds when no control measures were used and densities were less than 2 plants m−2. Experiments focusing on herbicide-application timing identified differences in downy brome control and the grain yield of spring wheat. Regardless of fall or spring application timing, glyphosate applied PRE to wheat completely controlled downy brome in 2007. In 2008, control was not achieved with the earliest glyphosate-application timings because of late-emerging plants. When comparing fall and spring application timings of other herbicides, imazapic provided at least 79% control at each timing and location, resulting in the highest imazamox-resistant spring wheat yield. In general, herbicides performed better when applied in fall than they did when applied in spring. When herbicides were applied POST, imazamox provided the greatest downy brome control and usually caused the largest numerical reduction in downy brome biomass, seed, and stem number. If downy brome was left untreated, regression analysis predicted approximately 2,000 stems m−2could result in total yield loss of spring wheat.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 885-890 ◽  
Author(s):  
Richard W. Smiley ◽  
Ruth G. Whittaker ◽  
Jennifer A. Gourlie ◽  
Sandra A. Easley

Associations between stunt nematodes and yield of no-till annual spring wheat (Triticum aestivum) were examined at two eastern Oregon locations. Geocenamus brevidens was the only species detected at one location and was mixed with Tylenchorhynchus clarus at another location. Six cultivars were planted with or without application of aldicarb during 2001. Inverse correlations between yield and stunt nematode density were significant at the G. brevidens-only site (P = 0.04) but not the G. brevidens + T. clarus site (P = 0.44). Yields were inversely correlated (P < 0.01) with stunt nematode populations at both sites during 2002. Aldicarb improved grain yields at both locations during 2001 (17 and 24%, P < 0.01) but not at the single location treated with aldicarb during 2002 (10%, P = 0.06). A lack of association between yield and T. clarus in 19 previously unreported experiments is discussed. Reduced wheat yield in response to stunt nematodes in Oregon is likely due to parasitism by G. brevidens and not T. clarus. This is the first report associating G. brevidens with suppression of wheat yield in the Pacific Northwest. Further studies are needed to define cropping systems and locations where G. brevidens may cause economic damage.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 551-556 ◽  
Author(s):  
Erivelton S. Roman ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

We studied the effect of tillage systems (no-till, chisel, and moldboard plow) and the presence or absence ofZea maysL. (corn) on soil temperature, moisture, and, subsequently, the emergence phenology and density ofChenopodium albumL. (common lambsquarters) at two sites (Elora and Woodstock) from 1993 to 1995. The tillage system affected the phenology ofC. albumseedling emergence only in 1995. In that year, more days were required to reach 80% cumulative seedling emergence in no-till than in the chisel or moldboard plow treatments. The delay in obtaining 80% cumulative emergence was attributed to a dry period from days 159 to 177 at Elora and from days 155 and 176 at Woodstock. The presence or absence of Z.maysdid not affect soil temperatures, soil moisture, orC. albumseedling emergence phenologies.Chenopodium albumseedling density was influenced by tillage and environmental conditions. Large variations in seedling density were attributed to environmental conditions. The presence or absence ofZ. maysdid not affectC. albumseedling density.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Joseph O. E. Oryokot ◽  
Stephen D. Murphy ◽  
Clarence J. Swanton

We studied the effect of no-till, chisel, and moldboard plow and the presence or absence of corn on soil temperature, moisture and, subsequently, the emergence phenology and density of pigweed seedlings at 2 sites from 1993 to 1995 inclusively. Tillage significantly affected the phenology of pigweed seedling emergence only during a June drought at one site in 1994. Soil temperature and moisture, measured at 2.5-cm depths, also were unaffected by tillage. Weed phenology is usually earlier in no-till because more seeds are located closer to the surface (< 5 cm deep) in no-till, thereby reducing the delay in penetrating through the soil, and because soil temperatures and moisture are nearer the germination and emergence optima. However, pigweed seedlings are already physiologically restricted to germination depths of less than 2.5 cm regardless of tillage; therefore, this prior constraint eliminated any potential differences in emergence phenologies caused by tillage. The presence or absence of corn also did not affect soil temperatures, soil moisture, or pigweed seedling emergence phenologies. Pigweed seedling density was significantly higher in no-till; this may have been caused by increased numbers of seeds near the soil surface in no-till. The presence or absence of corn did not affect pigweed seedling density; the lack of a significant effect probably reflects high variances in density. Although necessary for most weed species, tillage may be a less important factor to consider in predicting pigweed population dynamics and subsequent management recommendations.


Sign in / Sign up

Export Citation Format

Share Document