Alternative weed management strategies in conservation tillage systems for white beans (Phaseolus vulgaris L.)

1998 ◽  
Vol 78 (2) ◽  
pp. 363-370 ◽  
Author(s):  
David C. Hooker ◽  
Tony J. Vyn ◽  
Clarence J. Swanton

White bean producers often perceive that increased herbicide inputs are required with the adoption of conservation tillage. Acceptance of conservation tillage systems for this crop would increase if effective weed management practices were assured. In 1991 and 1992, various weed management strategies were evaluated in white bean (Phaseolus vulgaris L.) grown with three tillage systems at two sites in southern Ontario. Experiments were newly established each year following corn harvested for grain. Primary tillage treatments were fall moldboard plowing, fall chisel plowing, and first-year no-till. Combinations of mechanical weeding, metobromuron [3–(4–bromophenyl)–1–methoxy–1–methylurea] herbicide broadcasted at two rates, and a band application of the herbicide were investigated in each tillage system. Timely rotary hoeing reduced weed numbers in moldboard plow and chisel plow treatments, but was not effective in no-till. Weeds were adequately controlled in all tillage systems with mechanical treatments following a herbicide either broadcasted at a reduced rate or banded over the crop row. Metobromuron broadcasted at the full recommended rate alone controlled weeds in no-till; in contrast, the degree of weed control was poor without mechanical cultivation in both moldboard and chisel plow systems. Integrating mechanical and chemical control methods was more beneficial in tilled systems. Overall weed populations were lower in first-year no-till than moldboard plow or chisel plow tillage systems. White bean producers who adopt conservation tillage under conditions similar to those investigated can be assured of effective weed management alternatives as well as bean yields equivalent to conventional tillage. Key words: Conservation tillage, weed management, rotary hoe, inter-row cultivation, Phaseolus vulgaris

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kenneth R. Olson ◽  
Stephen A. Ebelhar ◽  
James M. Lang

The 24-year study was conducted in southern Illinois (USA) on land similar to that being removed from Conservation Reserve Program (CRP) to evaluate the effects of conservation tillage systems on: (1) amount and rates of soil organic carbon (SOC) storage and retention, (2) the long-term corn and soybean yields, and (3) maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT) plots did store and retain 7.8 Mg C ha−1more and chisel plow (CP) −1.6 Mg C ha−1less SOC in the soil than moldboard plow (MP) during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.


1998 ◽  
Vol 12 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Frank Forcella

Foxtail emergence patterns were evaluated in spring wheat under three tillage regimes, moldboard plow, chisel plow, and no-till, and three wheat planting dates. The first planting date was as soon as feasible in spring, and the second and third planting dates averaged 9 and 17 d later. Foxtail emergence patterns and seedbank density were evaluated each year for three consecutive years. Green foxtail was the dominant weed species. Tillage regime did not influence initial percent emergence of foxtail. Subsequent percent foxtail emergence was sometimes lower in no-till or chisel plow than in moldboard plow regimes until emergence approached 100%. By the third year, total foxtail plant emergence was greater in no-till and chisel plow than in moldboard plow and also greater in no-till than chisel plow. Earlier planting generally increased percent foxtail emergence until midseason. At 22 d after planting, average emergence of foxtail was 48, 67, and 81% for planting dates one, two, and three, respectively. Delayed planting increased rate of foxtail emergence but decreased density of emerged seedlings. Producers adopting chisel plow or no-till systems can expect to see greater foxtail infestations than in moldboard plow systems. Subsequently, more extensive weed management in reduced tillage systems will be needed to prevent heavy foxtail infestations. Delaying wheat planting may be a viable option for foxtail management through reduced plant densities and more simultaneous emergence patterns.


2000 ◽  
Vol 80 (2) ◽  
pp. 455-457 ◽  
Author(s):  
Clarence J. Swanton ◽  
Anil Shrestha ◽  
Stevan Z. Knezevic ◽  
Robert C. Roy ◽  
Bonnie R. Ball-Coelho

The vertical distribution of weed seeds in the seedbank of a sandy soil under three tillage systems (moldboard plow, chisel plow, and no-till) was estimated by a seedling-emergence method. The vertical distribution of the weed seedbank differed with tillage type and depth of tillage. The no-till system had the largest portion (90%) of the seedbank in the 0- to 5-cm layer. Chisel plowing distributed most of the seeds (66%) in the 5- to 10-cm layer. Moldboard plowing concentrated 71% of the seeds at the 10- to 15-cm depth. Our results suggest that the vertical distribution of the weed seedbank will be influenced by tillage type, depth of tillage, and soil type. Key words: Soil structure, moldboard plow, chisel plow, no-till


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Stephen D. Murphy ◽  
David R. Clements ◽  
Svenja Belaoussoff ◽  
Peter G. Kevan ◽  
Clarence J. Swanton

In a 6-yr study on four farms (36 fields) in Ontario, Canada, we tested the effects of tillage (moldboard, chisel plow, no tillage) and crop rotations (continuous corn, corn-soybean, corn-soybean-winter wheat) on emerged and seedbank weed species diversity and density. Aside from the imposed experimental treatments, all other management was generally consistent among farms. Tillage had the largest effect on weed diversity and density. No tillage promoted the highest weed species diversity, chisel plow was intermediate, and moldboard plow resulted in the lowest species diversity. These results are consistent with ecological succession theory. The increase in weed species diversity resulted from 20 species being associated with no tillage systems, 15 of which were winter annuals, biennials, or perennials. Emerged weed density was affected only by tillage. Over 6 yr, seedbank declined in no-tillage systems from 41,000 to 8,000 seeds m−3. Crop yields were not affected by tillage or crop rotation. In practical terms, reduced tillage in combination with a good crop rotation may reduce weed density and expenditures on weed management.


1999 ◽  
Vol 13 (2) ◽  
pp. 347-353 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Greg Semach ◽  
Xiangju Li ◽  
John T. O'Donovan ◽  
K. Neil Harker

A 4-yr field experiment was conducted to determine the merits of combining cultural and chemical controls to manage foxtail barley in reduced-tillage systems. Factors studied were crop row spacing, seeding rate, and application rate and timing of glyphosate within a spring wheat-flax cropping sequence. Glyphosate applied preseeding at 400 or 800 g/ha killed foxtail barley seedlings but only suppressed established perennial plants. Glyphosate applied postharvest at 800 g/ha killed 60 to 70% of established plants. Combinations of preseeding and postharvest glyphosate gave the greatest reductions in foxtail barley biomass and seed production and resulted in the greatest increases in crop yield. Including flax in the rotation allowed use of grass herbicides such as quizalofop or sethoxydim that effectively controlled foxtail barley seedlings and provided some suppression of perennial plants. An increase in wheat seeding rate from 75 to 115 kg/ha reduced foxtail barley growth and increased wheat yield in 3 of 4 yr. Increasing the flax seeding rate from 40 to 80 kg/ha or reducing wheat and flax row spacing from 30 to 20 cm provided little benefit in managing foxtail barley or increasing crop yield. A multiyear approach combining agronomic practices and timely use of herbicides should allow growers to effectively manage foxtail barley in annual cropping systems using conservation tillage.


2020 ◽  
Vol 71 (3) ◽  
pp. 268
Author(s):  
Gulshan Mahajan ◽  
Rajandeep Singh ◽  
Bhagirath S. Chauhan

Brassica tournefortii Gouan. (wild turnip, WT) has become a problematic weed in the no-till production systems of the northern grains region of Australia. Experiments were undertaken using different biotypes of B. tournefortii to examine its phenology, emergence and seedbank persistence. Biotypes were obtained from paddocks of barley (Hordeum vulgare L.) (WT1 and WT9) and chickpea (Cicer arietinum L.) (WT1/17 and WT2/17). Fresh seeds initially had high dormancy rates and persisted for a short period on the surface. Seedbank persistence increased with burial depth, with 39% of seeds remaining for WT1 and 5% for WT9 after 30 months at 2 cm depth. Persistence of buried seeds varied across biotypes; WT1/17 seedlings also emerged in the second growing season from 2 cm depth. Compared with buried seeds, seedlings readily emerged from the surface (in March–June following increased rainfall) within 6 months of planting. Emergence was greatest on the surface and varied between biotypes and tillage systems; the highest rate recorded was ~14%. Multiple cohorts were produced between February and October. No-till systems produced higher emergence rates than conventional tillage systems. Seedlings of B. tournefortii did not emerge from 5 cm soil depth; therefore, diligent tillage practices without seedbank replenishment could rapidly reduce the presence of this weed. A soil-moisture study revealed that at 25% of water-holding capacity, B. tournefortii tended to produce sufficient seeds for reinfestation in the field. Brassica tournefortii is a cross-pollinated species, and its wider emergence time and capacity to produce enough seeds in a dry environment enable it to become widespread in Australia. Early cohorts (March) tended to have vigorous growth and high reproduction potential. This study found B. tournefortii to be a poor competitor of wheat (Triticum aestivum L.), having greater capacity to compete with the slow-growing crop chickpea. Therefore, control of early-season cohorts and use of rotations with a more vigorous crop such as wheat may reduce the seedbank. The information gained in this study will be important in developing better understanding of seed ecology of B. tournefortii for the purpose of developing integrated management strategies.


1998 ◽  
Vol 12 (2) ◽  
pp. 286-292 ◽  
Author(s):  
Case Medlin ◽  
Thomas F. Peeper ◽  
James H. Stiegler ◽  
John B. Solie

Experiments were conducted near Duke and Forgan, OK, on land enrolled in the Conservation Reserve program (CRP) that had been seeded to Old World bluestem (OWB) to evaluate tillage systems for returning CRP grassland to winter wheat production. Glyphosate controlled OWB 72% or less in no-till (NT) wheat. Disk tillage (DT) and moldboard plow tillage (MPT) for wheat seedbed preparation controlled OWB 87 and 99%, respectively, at Forgan and 96 and 100%, respectively, at Duke. At Forgan, OWB control in NT was higher when glyphosate was applied in July than when applied in May. Soil water content to a depth of 120 cm at planting was as high in DT and MPT without herbicide as in NT with 1,680 g ae/ha glyphosate. Within NT and MPT, glyphosate did not consistently increase soil water content compared to the respective nontreated checks. In DT, soil water content to a depth of 120 cm was greater following glyphosate at 1,680 g/ ha than without glyphosate. Wheat density was greater in DT and MPT than in NT. Compared to the NT no herbicide treatment, tillage tripled wheat yields. Wheat yields were often greater where glyphosate was applied before tillage. No-till wheat production immediately after CPR in Oklahoma without prior destruction of accumulated OWB residue does not appear feasible.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 642-647 ◽  
Author(s):  
Douglas D. Buhler ◽  
Tommy C. Daniel

Giant foxtail density in corn was greater under no-till and chisel plow tillage systems than conventional or till plant. Giant foxtail density in no-till was 1400 shoots/m256 days after corn planting compared to 170 under conventional tillage. Velvedeaf density was greater under conventional tillage than all other tillage systems. Velvetleaf density was 120 plants/m256 days after corn planting under conventional tillage compared to 20 in no-till. Control of giant foxtail was often less under no-till or chisel plow conditions than conventional or till plant with the same herbicide treatment. Giant foxtail control with metolachlor treatments was affected less by tillage than similar treatments containing alachlor. Velvedeaf control was less with conventional tillage than other tillage systems when less than 1.7 kg/ha of atrazine was applied. Corn injury was not influenced by tillage systems. Corn yield was not affected by tillage systems under weed-free conditions. Several herbicide treatments resulted in corn yield similar to the weed-free under conventional tillage, but no herbicide treatment produced corn yield similar to the weed-free control under no-till conditions.


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Eric Spandl ◽  
Beverly R. Durgan ◽  
Frank Forcella

Emergence patterns of foxtail in spring wheat following soybean were evaluated for three seeding dates and three tillage regimes. Cumulative foxtail emergence, as a percentage of total plants emerged in the growing season, was generally not influenced by tillage regime throughout most of the emergence period, but when differences occurred, emergence was lower with no-till than with moldboard plow. Foxtail seedling densities were greater in no-till and chisel plow than in moldboard plow. Weed biomass and wheat yields were not affected by tillage regime. Delaying wheat seeding reduced foxtail percent emergence and emerged seedling density. Differences in emergence patterns of foxtail were attributable to thermal accumulation after seeding. Wheat yield was not influenced by seeding date in 2 of 3 yr.


2012 ◽  
Vol 26 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Jonquil Rood ◽  
Joan Campbell ◽  
Donn Thill ◽  
Dan Ball ◽  
Larry Bennett ◽  
...  

Farmers grow crops in the dryland region of the Pacific Northwest (PNW) using tillage practices ranging from moldboard plowing to no-tillage. The objective of this study was to determine the effect of tillage on persistence of imazamox herbicide in intermediate and high precipitation zones of the inland PNW. Along with a nontreated control, imazamox was applied to imidazolinone-tolerant winter wheat in the fall and spring at one, two, and three times the maximum labeled rate at locations near Genesee, ID, Davenport, WA, and Pendleton, OR. Moldboard plow, chisel plow, and no-till tillage treatments were implemented soon after wheat harvest and yellow mustard was planted the following season to determine crop response. Experiments were conducted at each location in 2005 to 2007 and 2006 to 2008. There were significant location by year and year and location interactions. There was no significant tillage by imazamox rate interaction, except at Pendleton in year 2, for all measured yellow mustard responses (crop injury, biomass, and yield). Genesee was colder than Pendleton and had more precipitation than Davenport, resulting in more injury to yellow mustard at Genesee than at Pendleton but less than at Davenport. Davenport had greater injury than the other two locations, likely due to lower soil pH, higher organic matter (OM), and cooler, drier climate, which allowed imazamox to persist longer in the soil. Overall, Pendleton had the least yellow mustard injury, which likely was related to its warmer, wetter climate and the concomitant rapid soil dissipation of imazamox. Tillage did not reduce the persistence of imazamox. Yellow mustard had the lowest injury and had greater mature biomass and seed yield in no-till seeded plots when averaged across imazamox rates compared to moldboard and chisel-plowed plots.


Sign in / Sign up

Export Citation Format

Share Document