Corn Tolerance to Weed Interference Varies with Preceding Crop

2011 ◽  
Vol 25 (3) ◽  
pp. 486-491 ◽  
Author(s):  
Randy L. Anderson

Crop diversity may improve tolerance to weed interference and reduce the need for herbicides. This experiment measured weed interference in corn as affected by the preceding crop in two studies. The first study, based on interference of the resident weed community, compared dry pea, soybean, canola, and spring wheat for effect on corn tolerance to weeds. Prominent weeds were green and yellow foxtail. The second study examined corn tolerance to a uniform infestation of foxtail millet as affected by dry pea, soybean, spring wheat, and corn as preceding crops. Each plot was split into weed-free and weed-infested subplots in both studies. Corn was most tolerant to weed interference following dry pea; compared with soybean, dry pea improved corn tolerance more than twofold. Corn also yielded the highest in weed-free conditions following dry pea; compared across 4 yr, corn yielded 7 to 23% more following dry pea than following either soybean or spring wheat. Crop diversity has helped producers reduce herbicide inputs in the Great Plains and may provide an additional benefit of reducing weed impact on crop yield.

2012 ◽  
Vol 26 (3) ◽  
pp. 438-442 ◽  
Author(s):  
Randy L. Anderson

Dry pea improves corn yield and tolerance to weed interference compared with soybean, spring wheat, or canola as preceding crops. To understand this synergy between dry pea and corn, growth and nutrient concentration of corn were examined following dry pea or soybean in sequence. Each corn plot was split into weed-free and weed-infested subplots, with foxtail millet established at one density to provide uniform weed interference. Compared with soybean, dry pea improved corn grain yield 10% in weed-free conditions and corn tolerance to weed interference more than twofold. Dry pea synergy to corn in weed-free conditions was not related to differences in corn development, height, or nutrient status of corn seedlings. When foxtail millet was present, dry pea increased corn height and rate of development late in the growing season compared with soybean. Improved corn tolerance to weed interference was not related to seedling emergence or growth of foxtail millet, as these parameters did not vary with preceding crop. Other biological factors must be involved in dry pea synergy to corn.


Author(s):  
Maryse Bourgault ◽  
Samuel A. Wyffels ◽  
Julia M. Dafoe ◽  
Peggy F. Lamb ◽  
Darrin L. Boss

Abstract The introduction of cover crops as fallow replacement in the traditional cereal-based cropping system of the Northern Great Plains has the potential to decrease soil erosion, increase water infiltration, reduce weed pressure and improve soil health. However, there are concerns this might come at the cost of reduced production in the subsequent wheat crop due to soil water use by the cover crops. To determine this risk, a phased 2-year rotation of 15 different cover crop mixtures and winter wheat/spring wheat was established at the Northern Agricultural Research Center near Havre, MT from 2012 to 2020, or four rotation cycles. Controls included fallow–wheat and barley–wheat sequences. Cover crops and barley were terminated early July by haying, grazing or herbicide application. Yields were significantly decreased in wheat following cover crops in 3 out of 8 years, up to maximum of 1.4 t ha−1 (or 60%) for winter wheat following cool-season cover crop mixtures. However, cover crops also unexpectedly increased following wheat yields in 2018, possibly due in part to residual fertilizer. Within cool-, mid- and warm-season cover crop groups, individual mixtures did not show significant differences impact on following grain yields. Similarly, cover crop termination methods had no impact on spring or winter wheat grain yields in any of the 8 years considered. Wheat grain protein concentration was not affected by cover crop mixtures or termination treatments but was decreased in winter wheat following barley. Differences in soil water content across cover crop groups were only evident at the beginning of the third cycle in one field, but important reductions were observed below 15 cm in the last rotation cycle. In-season rainfall explained 43 and 13% of the variability in winter and spring wheat yields, respectively, compared to 2 and 1% for the previous year cover crop biomass. Further economic analyses are required to determine if the integration of livestock is necessary to mitigate the risks associated with the introduction of cover crops in replacement of fallow in the Northern Great Plains.


2016 ◽  
Vol 34 (2) ◽  
pp. 291-298 ◽  
Author(s):  
A.A.P. SILVA ◽  
A.M. OLIVEIRA NETO ◽  
G. NAIARA ◽  
R.A.K. KARPINSKI ◽  
C.D.G. MACIEL

ABSTRACT Several factors can influence wheat crop yield, they include the interference imposed by weeds is one of the most important. The objective of this study was to evaluate the critical periods of weed interference in early wheat in the midwest of the state of Paraná, Brazil. The experiment was conducted in an experimental area located in Campo Mourão - PR, during the year 2013, using the BRS Pardela cultivar. The treatments consisted of periods of coexistence and weed control in wheat. Periods of coexistence and control were 0, 7, 14, 28, 35 and the whole cycle at days after crop emergence (DAE). Number of reproductive tillers per plant, spike length, number of spikelets per spike, plant height and wheat crop yield, were significantly affected by coexistence with prevailing infestation of Raphanus raphanistrum, therefore, a critical period of interference was determined at 16 to 24 DAE.


2002 ◽  
Vol 82 (2) ◽  
pp. 307-318 ◽  
Author(s):  
P. R. Miller ◽  
J. Waddington ◽  
C. L. McDonald ◽  
D. A. Derksen

Extension of the commonly used spring wheat (Triticum aestivum L.)-fallow rotation to include broadleaf crops requires information on their effects on a following wheat crop. We grew a spring wheat test crop on the stubbles of wheat and seven broadleaf crops: desi chickpea (Cicer arietinum L.), dry bean (Phaseolus vulgaris L.), dry pea (Pisum sativum L.), lentil (Lens culinaris L.), mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.), and sunflower (Helianthus annuus L.). This study was conducted near Swift Current, SK, from 1993 to 1997, and Congress, SK, from 1995 to 1997. After harvest, soil water differed among crop stubbles and by sampling depth. To the 60-cm depth, only soil under dry bean stubble held more water (8 mm), while soil under lentil, desi chickpea, sunflower and safflower stubbles held less water (6, 8, 9 and 17 mm, respectively) than wheat stubble (P < 0.05). From 60 to 120 cm, soil under dry pea and dry bean held more water (7 and 10 mm, respectively), and under sunflower and safflower stubbles less (7 and 14 mm, respectively), than under wheat stubble (P < 0.05). Lentil, dry bean and dry pea stubbles averaged 5, 6 and 9 kg ha-1 greater soil N in the 0- to 120-cm soil depth than wheat stubble (P < 0.05). The average yield of wheat grown on the four pulse crop stubbles was 21% greater than yields on wheat stubble, but did not differ from the oilseed stubbles (P < 0.01). Compared to wheat stubble, wheat grown on broadleaf crop stubbles had higher grain protein concentrations, increasing by 8 and 5%, for pulses and oilseeds, respectively (P < 0.01). Nitrogen removal in the wheat test crop grain yield averaged 15 kg ha-1 for pulse stubbles compared with wheat stubble. Soil N contribution by pulse stubbles was an important factor contributing to wheat growth under a dryland cropping system on the northern Great Plains. Key words: Crop sequence, spring wheat, pulse crops, N cycling, water use


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


1998 ◽  
Vol 78 (3) ◽  
pp. 563-572 ◽  
Author(s):  
V. Jowkin ◽  
J. J. Schoenau

Nitrogen availability to a spring wheat crop was examined in the cropping season in a side-by-side comparison of no-till (first year) and tillage fallow in an undulating farm field in the Brown soil zone in southwestern Saskatchewan. Thirty different sampling points along a grid in each tillage landscape were randomly selected, representing 10 each of shoulder, footslope and level landscape positions. Nitrogen availability was studied i) by profile inorganic N content ii) by crop N uptake and yield of spring wheat (Triticum aestivum L.) and iii) by 15N tracer technique and in situ burial of anion exchange resin membranes (AEM).Pre-seeding available moisture content of the surface soil samples was significantly higher under no-till compared with tillage fallow. However, no significant differences in pre-seeding profile total inorganic N, crop N uptake and yield were observed between the treatments. At the landform scale, shoulder positions of the respective tillage systems had lower profile inorganic N, crop N uptake and yield compared with other slope positions. Soil N supply power, as determined by 15N tracer and AEM techniques, was not significantly different between the tillage treatments, indicating that N availability is not likely to be greatly affected in initial years by switching to no-till fallow in these soils under normal moisture conditions. Key words: Summerfallow, landscape, nitrogen, wheat


2012 ◽  
Vol 29 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Drew J. Lyon ◽  
Gary W. Hergert

AbstractOrganic farming systems use green and animal manures to supply nitrogen (N) to their fields for crop production. The objective of this study was to evaluate the effect of green manure and composted cattle manure on the subsequent winter wheat (Triticum aestivumL.) crop in a semiarid environment. Dry pea (Pisum sativumL.) was seeded in early April and terminated at first flower in late June. Composted cattle manure was applied at 0, 11.2 or 22.5 Mg ha−1just prior to pea termination. Winter wheat was planted in mid September following the green manure or tilled summer fallow. No positive wheat response to green manure or composted cattle manure was observed in any of the 3 years of the study. In 2 of the 3 years, wheat yields and grain test weight were reduced following green manure. Green manure reduced grain yields compared with summer fallow by 220 and 1190 kg ha−1in 2009 and 2010, respectively. This may partially be explained by 40 and 47 mm less soil water at wheat planting following peas compared with tilled summer fallow in 2008 and 2009, respectively. Also, in 2008 and 2009, soil nitrate level averaged 45 kg ha−1higher for black fallow compared with green manure fallow when no compost was added. Organic growers in the semiarid Central Great Plains will be challenged to supply N fertility to their winter wheat crop in a rapid and consistent manner as a result of the inherently variable precipitation. Growers may need to allow several years to pass before seeing the benefits of fertility practices in their winter wheat cropping systems.


2007 ◽  
Vol 99 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Rafael J. López-Bellido ◽  
Luis López-Bellido ◽  
Jorge Benítez-Vega ◽  
Francisco J. López-Bellido

Sign in / Sign up

Export Citation Format

Share Document