Allyl Isothiocyanate as a Methyl Bromide Alternative for Weed Management in Polyethylene-Mulched Tomato

2012 ◽  
Vol 26 (3) ◽  
pp. 449-454 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Methyl bromide has been widely used for weed control in polyethylene-mulched tomato production. With the phaseout of methyl bromide in the United States, an effective alternative is needed. Field experiments were conducted in 2007 and 2009 to determine if allyl isothiocyanate (ITC) would provide substantive weed control in tomato along with crop tolerance under low-density polyethylene (LDPE) and virtually impermeable film (VIF) mulch. Treatment factors included two mulch types (LDPE and VIF) and six rates of allyl ITC (0, 15, 75, 150, 750, 1,500 kg ha−1). A standard treatment of methyl bromide : chloropicrin (67 : 33%) at 390 kg ha−1under LDPE mulch was also established. Allyl ITC was broadcast applied and incorporated in soil before forming raised beds and laying plastic mulch. Tomatoes were transplanted 3 wk after applying allyl ITC or methyl bromide treatments. Tomato injury was ≤ 8% in all treatments at 2 wk after transplanting (WATP). Allyl ITC at 913 (± 191) kg ha−1was required to control yellow nutsedge, Palmer amaranth, and large crabgrass equivalent to methyl bromide at 6 WATP and maintain marketable tomato yield equivalent to methyl bromide treatment. VIF mulch was not effective in increasing weed control or improving the marketable yield of tomato over LDPE mulch. This research demonstrates that allyl ITC under an LDPE mulch can have a practical application for weed control in polyethylene-mulched tomato in the absence of methyl bromide.

2014 ◽  
Vol 28 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Pratap Devkota ◽  
Jason K. Norsworthy

Isothiocyanates (ITCs) were evaluated as an alternative to methyl bromide (MeBr) for control of Palmer amaranth, large crabgrass, and yellow nutsedge; reduction of tuber density; and increase in marketable tomato yield in low density polyethylene (LDPE)-mulched tomato production. Allyl ITC was applied at 450, 600, and 750 kg ai ha−1; metham sodium (methyl ITC generator) was applied at 180, 270, and 360 kg ai ha−1; and MeBr plus chloropicrin (mixture of MeBr and chloropicrin at 67 : 33%, respectively) was applied at 390 kg ai ha−1. A nontreated weedy check was included for comparison. There was no injury to tomato plants following allyl ITC, metham sodium, or MeBr application. Allyl ITC at 750 kg ha−1or metham sodium at 360 kg ha−1controlled Palmer amaranth ≥ 79%, large crabgrass ≥ 76%, and yellow nutsedge ≥ 80% and was comparable to the weed control with MeBr. Highest rates of allyl ITC and metham sodium reduced yellow nutsedge tuber density (≤ 76 tubers m−2) comparable to the MeBr application. Total marketable tomato yield was ≥ 31.6 t ha−1in plots treated with allyl ITC at 750 kg ha−1or metham sodium at 360 kg ha−1. Marketable tomato yield from the highest rate of allyl ITC or metham sodium were similar to the yield (38.2 t ha−1) with MeBr treatment. Therefore, allyl ITC at 750 kg ha−1and metham sodium at 360 kg ha−1are effective alternatives to MeBr for Palmer amaranth, large crabgrass, and yellow nutsedge control in LDPE-mulched tomato.


2012 ◽  
Vol 26 (4) ◽  
pp. 666-672 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Field experiments were conducted in 2006 and 2007 to evaluate the herbicidal activity of phenyl isothiocyanate (ITC) on yellow nutsedge, Palmer amaranth, and large crabgrass in tomato grown on two polyethylene-mulched types. Treatments included two mulch types (low density polyethylene [LDPE] mulch and virtually impermeable film [VIF] mulch) and phenyl ITC at 0, 15, 75, 150, 750, and 1,500 kg ha−1. A standard rate of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1under LDPE mulch was included for comparison. Regardless of mulch type, phenyl ITC at 1,452 (±133) and 1,719 (±426) kg ha−1was required for broad-spectrum weed control equivalent to methyl bromide in 2006 and 2007, respectively. Tomato injury was ≥ 44% at the highest phenyl ITC rate of 1,500 kg ha−1at 2 wk after transplanting (WATP) both years, irrespective of mulch type. Greater crop injury was observed from 750 kg ha−1of phenyl ITC in 2006 (≥ 27%) than in 2007 (≤ 10%). The greater injury in 2006 was attributed to a higher phenyl ITC concentration because holes in the plastic mulch for transplanting were punched at the time of transplanting in 2006; whereas, in 2007 holes were punched 2 d before transplanting, allowing 2 d of aeration before transplanting. Tomato marketable yield at all rates of phenyl ITC was lower than with methyl bromide in 2006. However, in 2007, marketable yield in plots treated with phenyl ITC at 750 kg ha−1was equivalent to methyl bromide. Overall, VIF mulch was no more effective than LDPE mulch at increasing weed control or improving the marketable yield of tomato either year.


2010 ◽  
Vol 20 (4) ◽  
pp. 764-771 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Ronald L. Rainey ◽  
Edward E. Gbur

The phase-out of methyl bromide required an effective and economically viable alternative for weed management in polyethylene-mulched tomato (Solanum lycopersicum). A field experiment was conducted to compare economics of tomato production associated with crucifer (Brassicaceae) cover crops under low-density polyethylene mulch (LDPE) and virtually impermeable film (VIF) mulch with a standard treatment of methyl bromide:chloropicrin (67:33) at 350 lb/acre. Three crucifer cover crops, ‘Seventop’ turnip (Brassica rapa), ‘Pacific Gold’ oriental mustard (Brassica juncea), and Caliente [a blend of brown mustard (B. juncea) and white mustard (Sinapis alba)], were evaluated in combination with hand-weeding. Because of marginal weed control from crucifer cover crops, hand-weeding cost in all cover crop plots, regardless of mulch type, increased from $380.54/acre to $489.10/acre over that in methyl bromide plots. However, total weed management costs in the untreated control and cover crops with LDPE treatments were $17.82/acre to $111.33/acre lower than methyl bromide. Because of mulch expenses, VIF mulch increased the total weed management cost by $328.16/acre over LDPE mulch in the untreated control and cover crop treatments. Because of equivalent marketable yield, gross returns ($21,040.43/acre) were identical in all treatments. Preplant fumigation with methyl bromide provided $6260.90/acre of net returns in tomato production. The untreated control, ‘Seventop’ turnip, ‘Pacific Gold’ oriental mustard, and Caliente mustard under LDPE treatment were $54/acre, $54/acre, $98/acre, and $147/acre more profitable, respectively, than methyl bromide. However, in all other treatments under VIF, net returns relative to methyl bromide were reduced from $181/acre to $274/acre. Therefore, regardless of soil amendment with crucifer cover crops, hand-weeding can serve as an economically viable alternative to methyl bromide for weed control in LDPE-mulched tomato production, depending on the nature and level of pest infestation, labor availability, and wages.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 596-602 ◽  
Author(s):  
Reid J. Smeda ◽  
Stephen C. Weller

Weed control in tomato production systems is difficult because few are registered. The use of rye for weed control and its influence on transplant tomato yields was investigated during 1986 and 1987 at two locations in IN to determine if cover crops can provide an alternative weed management technique. ‘Wheeler’ rye was sown in the fall of 1985 and 1986, and mowed or desiccated with glyphosate at various times before planting ‘IND 812'tomatoes. At the time of glyphosate application, rye residues reduced the growth of overwintering weeds by 93% or more compared to bare ground (no cover crop) areas. The time of desiccating rye prior to planting tomatoes affected the extent of weed suppression by rye residues. In 1986, rye treated 4 wk before planting (WBP) tomatoes provided up to 89% suppression of weed growth at 2 wk after planting (WAP) tomatoes, but no measurable weed suppression 5 WAP tomatoes. Rye treated 2 WBP tomatoes provided up to 97% weed suppression up to 5 WAP tomatoes. In 1987, weed suppression varied between locations and differed from 1986. At Lafayette, rye treated 2 and 1 WBP tomatoes provided greater than 81% suppression of weed growth up to 8 WAP tomatoes. Rye mowed and the residues placed into a plot at a known density also reduced weed growth (60%) 8 WAP tomatoes. At Vincennes, however, rye treated 2 and 1 WBP in 1987 did not reduce weed growth later than 4 WAP tomatoes compared to the unweeded, bare ground treatment. The mowed rye residues at Vincennes suppressed weed growth (96%) up to 8 WAP tomatoes. Tomato yield was correlated to weed suppression. In 1986, tomato yield in the rye treated 2 WBP tomatoes was comparable to yield in the bare ground, weeded controls. However, tomato yield in rye plots treated 4 WBP tomatoes was similar to yield in the bare ground, unweeded control. In 1987, tomato yields in all rye plots (mowed, treated 2 and 1 WBP tomatoes) were similar to tomato yields in the bare ground, weeded control at Lafayette. At Vincennes, only the mowed rye treatment yielded comparably to the bare ground, weeded control. In general, rye plots that were weeded yielded similar to or up to 28% more than a bare ground, weeded control. Tomato yields were not reduced by rye residues. Tomato yields in rye residues that provided effective suppression of weed growth (greater than 80%) for a minimum of 4 to 5 WAP tomatoes were comparable to bare ground, weeded controls.


2012 ◽  
Vol 26 (2) ◽  
pp. 364-370 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Yellow nutsedge is a problematic weed in polyethylene-mulched tomato production. Soil fumigation with methyl bromide is the most effective method of controlling nutsedges, but because of ozone depletion, the phase-out of methyl bromide has complicated nutsedge control in polyethylene-mulched tomato and other vegetable crops. Plants belonging to the Brassicaceae family produce glucosinolates, which upon tissue decomposition generate biocidal isothiocyanates and therefore can be used as a biological alternative for yellow nutsedge control. Field experiments were conducted in 2007 and 2009 to study the influence of soil amendment with ‘Seventop’ turnip cover crop on the interference of yellow nutsedge planted at 0, 50, and 100 tubers m−2in raised-bed polyethylene-mulched tomato production. There was no advantage of soil amendment with Seventop on reducing yellow nutsedge interference in polyethylene-mulched tomato. Regardless of soil amendment, increasing initial tuber density from 50 to 100 tubers m−2increased yellow nutsedge shoot density, shoot dry weight, and tuber production at least 1.7, 1.6, and 1.6 times, respectively. As a result, tomato canopy width, shoot dry weight, and marketable yield decreased with increasing initial tuber densities. However, increased tuber density had minimal impact on tomato height. Relative to weed-free plots, interference of yellow nutsedge at 50 and 100 tubers m−2reduced marketable yield of tomato up to 32 and 49%, respectively. Shading of the middle and lower portion of tomato plants by yellow nutsedge shoots could be the major factor for reducing tomato growth and yield in weedy plots. It is concluded that soil amendment with Seventop turnip is not a viable option for reducing yellow nutsedge interference at 50 and 100 tuber m−2in polyethylene-mulched tomato.


2012 ◽  
Vol 26 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Edward E. Gbur

Methyl bromide is a common fumigant for effective weed control in polyethylene-mulched vegetable crops. However, the ban on methyl bromide in the United States has created a need to find a suitable alternative. This study investigated the herbicidal efficacy of phenyl isothiocyanate (ITC) as a methyl bromide alternative for weed control in polyethylene-mulched bell pepper during 2006 and 2007. Six rates of phenyl ITC (0, 15, 75, 150, 750, 1,500 kg ha−1) under low-density polyethylene (LDPE) or virtually impermeable film (VIF) mulch were tested against yellow nutsedge, Palmer amaranth, and large crabgrass. Additionally, a standard treatment of methyl bromide/chloropicrin (67 : 33%) at 390 kg ha−1under LDPE mulch was included for comparison. VIF mulch provided no advantage over LDPE mulch in either improving weed control or marketable yield in bell pepper. Unacceptable pepper injury (≥ 60%) occurred at the highest phenyl ITC rate of 1,500 kg ha−1at 2 WATP in both years, regardless of mulch type. Higher bell pepper injury was observed in 2006 (≥ 36%) than in 2007 (≤ 11%) at 750 kg ha−1of phenyl ITC. The lower injury in 2007 could be attributed to aeration of beds 48 h prior to transplanting. Regardless of mulch type, phenyl ITC at 2,071 (± 197) and 1,655 (± 309) kg ha−1was required to control yellow nutsedge, Palmer amaranth, and large crabgrass equivalent to methyl bromide in 2006 and 2007, respectively. Bell pepper marketable yield at all rates of phenyl ITC was lower than methyl bromide in 2006. In contrast, marketable yield in phenyl ITC at 750–kg ha−1was equivalent to methyl bromide in 2007. It is concluded that phenyl ITC should be applied at least 4.2 times higher rate than methyl bromide for effective weed control, and bed aeration is required to minimize crop injury and yield loss. Additional research is needed to test phenyl ITC in combination with other weed control strategies to obtain effective weed control with acceptable crop safety.


2015 ◽  
Vol 29 (4) ◽  
pp. 800-809 ◽  
Author(s):  
Sushila Chaudhari ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
David L. Jordan ◽  
Christopher C. Gunter ◽  
...  

Tomato grafting has gained increased attention in the United States as an alternative to methyl bromide to control soilborne pests and diseases. Although several herbicides are registered in tomato production, a lack of information exists on the effect of herbicides on grafted tomato. Greenhouse and field experiments were conducted to determine herbicide tolerance of grafted tomato. In greenhouse experiments, halosulfuron (27, 54, and 108 g ai ha−1), metribuzin (280, 560, and 1,120 g ai ha−1), andS-metolachlor (1,070, 2,140, and 3,200 g ai ha−1) were applied posttransplant to nongrafted ‘Amelia' and Amelia scion grafted onto ‘Maxifort' or ‘RST-04-106-T' tomato rootstocks. Although herbicide injury was observed, no differences were observed in grafted and nongrafted tomato response including visible injury assessments, plant height, and fresh weight. Tomato injury at 3 wk after herbicide application increased from 3 to 12, 1 to 87, and 0 to 37% as rate of halosulfuron, metribuzin, andS-metolachlor increased, respectively. In field experiments under plasticulture, herbicides applied pretransplant included fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 54 g ha−1), metribuzin (280 and 560 g ha−1), napropamide (1,120 and 2,240 g ha−1),S-metolachlor (800 and 1,070 g ha−1), and trifluralin (560 and 840 g ai ha−1). Amelia was used as the scion and the nongrafted control. ‘Anchor-T', ‘Beaufort', or Maxifort tomato were used as rootstocks for grafted plants. Fomesafen, halosulfuron, napropamide, and trifluralin initially caused greater injury to grafted tomato than to nongrafted tomato regardless of rootstock (Anchor-T, Beaufort, or Maxifort). However, by 4 wk after treatment, all grafted and nongrafted plants had recovered from herbicide injury. A transplant type-by-herbicide interaction was not observed for yield, but grafted A-Maxifort tomato produced greater total and marketable yield than nongrafted Amelia tomato. Grafted tomato exhibited similar tolerance as nongrafted tomato for all herbicides applied post- and pretransplant.


2017 ◽  
Vol 31 (5) ◽  
pp. 694-700 ◽  
Author(s):  
Peter M. Eure ◽  
A. Stanley Culpepper

Bell pepper producers are faced with the challenge of controlling weeds following the phase-out of methyl bromide (MBr). Numerous attempts have been made to find a single fumigant or herbicide to control a broad spectrum of weeds. Adequate weed control in bell pepper will likely require weed management systems utilizing both fumigant and herbicide options. A weed management system including the fumigant dimethyl disulfide (DMDS) plus chloropicrin (Pic) plus the herbicide napropamide prior to transplant followed byS-metolachlor POST may be necessary to replace MBr. Field experiments were conducted during 2010 and 2011 near Ty Ty, Georgia to determine bell pepper and weed response to DMDS plus Pic or in systems with napropamide and/orS-metolachlor. Bell pepper were not significantly injured by DMDS plus Pic or napropamide. Injury caused byS-metolachlor was transient and plants fully recovered by 4 weeks after treatment (WAT). Yellow nutsedge control 6 WAT using DMDS plus Pic applied at 468 or 560 L ha−1controlled yellow nutsedge 91 to 95%. Large crabgrass control 6 WAT was 92 to 100% when DMDS plus Pic was applied at 468 or 560 L ha−1with or without a(n) herbicide (S-metolachlor or napropamide). Palmer Amaranth control prior to harvest was 21, 64, and 85% using DMDS plus Pic at 374, 468, or 560 L ha−1, respectively. DMDS plus Pic applied at 468 or 560 L ha-1with napropamide followed byS-metolachlor POST gave 95 to 99% control of Palmer amaranth 6 WAT. Consistent weed control and optimum yields were obtained when DMDS plus Pic was used at 468 L ha−1plus napropamide beneath plastic mulch followed byS-metolachlor POST.


2013 ◽  
Vol 27 (3) ◽  
pp. 580-589 ◽  
Author(s):  
Pratap Devkota ◽  
Jason K. Norsworthy ◽  
Ronald Rainey

Methyl bromide (MeBr), a widely used soil fumigant in tomato production, has been banned for ordinary agricultural uses. In the absence of MeBr, a viable alternative is imperative for weed control and prevention of economic loss in tomato production. A field study was conducted in the summers of 2010 and 2011 at Fayetteville, AR, to compare the efficacy and economics of herbicide programs consisting of pre-transplant followed by (fb) post-transplant herbicides in low-density polyethylene (LDPE) mulched tomato. Pre-transplant imazosulfuron at 0.112, 0.224, and 0.336 kg ai ha−1andS-metolachlor at 1.6 kg ai ha−1were fb a post-transplant mixture of trifloxysulfuron plus halosulfuron at 0.008 and 0.027 kg ai ha−1at 4 wk after transplant (WATP). The standard MeBr treatment (2:1 mixture of MeBr plus chloropicrin at 390 kg ai ha−1), weed-free (hand weeding) control, and nontreated weedy check were used for comparison. Pre-transplantS-metolachlor fb post-transplant herbicides controlled Palmer amaranth ≥ 89%, large crabgrass ≥ 88%, and yellow nutsedge ≥ 90%, which was comparable to the control with MeBr. Tomato recovered the injury (≤ 19% at 6 WATP) from post-transplant herbicides in the later weeks.S-metolachlor–containing herbicide programs yielded marketable tomato fruit comparable to the yield with MeBr. Economic evaluation of the herbicide programs demonstrated a net return of $3,758.50 ha−1from theS-metolachlor–containing herbicide program in LDPE-mulched tomato. Likewise, this herbicide program showed minimum loss of ≤ $671.61 ha−1in net return relative to MeBr. In conclusion, a herbicide program consisting of pre-transplantS-metolachlor fb post-transplant trifloxysulfuron plus halosulfuron is a viable alternative to MeBr for weed control and marketable yield in LDPE-mulched tomato production.


2012 ◽  
Vol 22 (1) ◽  
pp. 64-69 ◽  
Author(s):  
W. Carroll Johnson ◽  
David B. Langston ◽  
Daniel D. MacLean ◽  
F. Hunt Sanders ◽  
Reid L. Torrance ◽  
...  

Field experiments were conducted from 2008 through 2010 near Lyons, GA, to develop integrated weed management systems for organic Vidalia® sweet onion (Allium cepa) production. Treatments were a factorial arrangement of summer solarization, cultivation with a tine weeder, and a clove oil herbicide. Plots were solarized with clear plastic mulch during the summer fallow period before transplanting onion. Cultivation treatments were twice at 2-week intervals, four times at 2-week intervals, and a noncultivated control. Herbicide treatments were clove oil plus vinegar, clove oil plus an emulsified petroleum oil (EPO) insecticide used as an adjuvant, and a nontreated control. ‘Savannah Sweet’ onions were transplanted in early-December each year, with cultivation and herbicide applications events occurring the following January and February. Onions were harvested the following spring. In addition to yield measurement, a subsample of harvested onion was stored in a controlled atmospheric (CA) storage facility to evaluate treatment effects on diseases of stored onion. Summer fallow solarization did not control the cool-season weeds present in these trials. Cultivating transplanted onion with a tine weeder effectively managed cutleaf eveningprimrose (Oenothera laciniata) and swinecress (Coronopus didymus) and improved onion yields in 2 of 3 years. There was little difference in overall performance between two cultivations and four cultivations with the tine weeder. The 1 year of marginal weed control with the tine weeder was due to persistently wet soils during winter months that inhibited optimum performance of the implement. Clove oil, combined with vinegar or an EPO insecticide, provided marginal weed control and had no effect on onion yield. Diseases of stored onion were unaffected by any of the treatment combinations, although overall incidence of diseases of stored onion was higher in 2010 compared with other years. This corresponds with the 1 year of marginal weed control with the tine weeder, suggesting that the presence of weeds may be a factor related to disease incidence during storage.


Sign in / Sign up

Export Citation Format

Share Document