Utilization of Saflufenacil in a Clearfield® Rice (Oryza sativa) System

2015 ◽  
Vol 29 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Garret B. Montgomery ◽  
Jason A. Bond ◽  
Bobby R. Golden ◽  
Jeffrey Gore ◽  
H. Matthew Edwards ◽  
...  

Research was conducted in Mississippi in 2012 and 2013 to compare the efficacy of saflufenacil to other broadleaf herbicides applied in mixtures with imazethapyr in a Clearfield rice system. Saflufenacil at 50 g ai ha−1, carfentrazone at 35 g ai ha−1, a prepackaged mixture of halosulfuron plus thifensulfuron at 35 plus 4 g ai ha−1, and a prepackaged mixture of propanil plus thiobencarb at 2,240 plus 2,240 g ai ha−1 were applied in mixture with imazethapyr at 70 g ai ha−1 early-POST (EPOST) to rice in the one- to two-leaf stage or late-POST (LPOST) to rice in the four-leaf to one-tiller stage. No differences in injury among the broadleaf herbicides or between application timings were detected at any evaluation. Imazethapyr combined with propanil plus thiobencarb or saflufenacil provided the greatest control of barnyardgrass 7 and 14 d after treatment (DAT). Hemp sesbania, ivyleaf morningglory, and Palmer amaranth control was greatest and similar for imazethapyr combined with carfentrazone, propanil plus thiobencarb, and saflufenacil; however, rough rice yield was greatest for imazethapyr combined with propanil plus thiobencarb or saflufenacil. Propanil plus thiobencarb or saflufenacil can be used in a Clearfield rice system to achieve optimum weed control and highest rice yields.

2018 ◽  
Vol 32 (5) ◽  
pp. 532-536
Author(s):  
Eric P. Webster ◽  
Eric A. Bergeron ◽  
David C. Blouin ◽  
Benjamin M. McKnight ◽  
Matthew J. Osterholt

AbstractTwo field studies were conducted in Louisiana to determine the impact of Nealley’s sprangletop on rough rice yield under multiple environments in 2014, 2015, and 2016. The first study evaluated optimal timings of Nealley’s sprangletop removal for optimizing rough rice yields. The second study evaluated the impact of Nealley’s sprangletop densities on rough rice yield. Nealley’s sprangletop was removed with applications of fenoxaprop at 122 g ai ha–1at 7, 14, 21, 28, 35, and 42 d after emergence (DAE). Nealley’s sprangletop removal at 7 and 14 DAE resulted in higher rough rice yields of 7,880 and 6,960 kg ha–1, respectively, when compared with the rice from the season-long Nealley’s sprangletop competition with a 6,040 kg ha-1yield. Delaying herbicide application from 7 DAE to 42 DAE resulted in a yield loss of 1,740 kg ha–1. Over the 35-d delay in application, rough rice yield loss from Nealley’s sprangletop interference was equivalent to 50 kg ha–1d–1. Nealley’s sprangletop densities were established at 1, 3, 7, 13, and 26 plants m–2by transplanting Nealley’s sprangletop when rice reached the one- to two-leaf stage. At Nealley’s sprangletop densities of 1 to 26 plants m–2, rough rice yields were reduced 10 to 270 kg ha–1, compared with the rice from weed-free plots. Based on regression analysis, Nealley’s sprangletop densities of 1, 35, 70, and 450 plants m–2reduced rough rice yield 0.14%, 5%, 10%, and 50%, respectively.


2011 ◽  
Vol 25 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Jason A. Bond ◽  
Timothy W. Walker

Field studies were conducted to compare the response of one inbred (‘CL161’) and two hybrid (‘CLXL729’ and ‘CLXL745’) Clearfield (CL) rice cultivars to imazamox. Imazamox was applied at 44 and 88 g ai ha−1to rice in the panicle initiation (PI) and PI plus 14 d (PI + 14) growth stages and at 44 g ha−1to rice in the midboot growth stage. Maturity of hybrid CL cultivars was delayed following imazamox at 44 g ha−1applied at PI + 14 and midboot. Furthermore, imazamox at 44 g ha−1, applied at midboot, delayed maturity of CLXL745 more than CLXL729. Expressed as a percentage of the weed-free control plots, rough rice yields for CLXL729 were 91% following imazamox at 44 g ha−1applied at PI + 14, 78% following imazamox at 44 g ha−1applied at midboot, and 77% for imazamox at 88 g ha−1applied at PI + 14. Rough rice yield for CLXL745 was 77 to 92% of the control following all imazamox treatments. All imazamox treatments reduced CLXL745 rough rice yield compared with CL161. Rough rice yield, pooled across CL cultivar, varied with imazamox treatment between years, and these differences may have been a consequence of lower temperatures and solar radiation in the first year. Hybrid CL cultivars CLXL729 and CLXL745 were less tolerant than was CL161 when imazamox was applied at nonlabeled rates (88 g ha−1) and/or timings (PI + 14 or midboot). Because of variability in rice growth stages and irregularities in imazamox application in commercial fields, inbred CL cultivars should be planted where an imazamox application will likely be required.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 116-119 ◽  
Author(s):  
Roy J. Smith

Rough-rice yield of drill-seeded paddy rice (Oryza sativaL. ‘Lebonnet’ and ‘Starbonnet’) at stands of 215 to 270 plants/m2at Stuttgart, Arkansas were reduced 18% by season-long competition of spreading dayflower (Commelina diffusaBurm. f. ♯3COMDI) at a density of 22 plants/m2. Competition durations of 20, 40, 60, or 80 days did not reduce rice yields. None of the durations of competition affected head-rice yields (percent whole milled kernels) or germination of rice seed.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Wenming Zhang ◽  
Alan K. Watson

Efficacy of an indigenous fungus,Exserohilum monoceras, for the control of 3Echinochloaspecies was evaluated and compared under both regulated greenhouse and screenhouse (field plots netted with 2 layers of metal mesh screening to exclude vertebrate pests) conditions. Under greenhouse conditions, an inoculum dose of 2.5 × 107conidia m−2killed all seedlings of both barnyardgrass andE. glabrescens, whereas an inoculum dose of 5.0 × 107conidia m−2was required to obtain 100% mortality of junglerice seedlings. The 1.5-leaf stage of all 3Echinochloaspecies was the most susceptible. Increasing inoculum density increased weed control efficacy on younger or olderEchinochloaseedlings. The highest level of control was observed forE. glabrescens, less for barnyardgrass, and least for junglerice. Under screenhouse conditions,Exserohilum monocerascaused more than 90% mortality ofEchinochloaspecies when the inoculum was formulated as an oil emulsion or when applied as a dry powder.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 589-593 ◽  
Author(s):  
John T. McGregor ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted in 1984 and 1985 at Stuttgart, AR, to investigate the interspecific and intraspecific interference of broadleaf signalgrass densities of 0, 10, 50, 100, and 150 plants/m2with rice. In 1984, significant reductions in rice leaf area index (LAI) occurred 6 weeks after emergence with all broadleaf signalgrass densities. The first reduction in LAI occurred 8 weeks after emergence at the density of 150 plants/m2in 1985. Densities of 50 plants/m2or greater reduced rice dry weight 6 weeks after emergence in 1984, and the highest density of 150 plants/m2reduced rice dry weight 12 weeks after emergence in 1985. Height of rice was reduced by densities of 100 and 150 plants/m2. Linear regression equations indicated that each broadleaf signalgrass plant/m2reduced rough rice yield 18 kg/ha both years. Growth of broadleaf signalgrass was reduced by interspecific and intraspecific interference. The dry weight of broadleaf signalgrass increased at a decreasing rate at plant densities of 100 to 150/m2when grown alone in 1984 and 1985, when a quadratic equation best described the response. Regression equations indicated interspecific interference from rice reduced broadleaf signalgrass dry weight an average of 48 and 81% in 1984 and 1985, respectively. The height of broadleaf signalgrass was greater when grown with rice than when grown alone.


Weed Science ◽  
1984 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Edward P. Richard ◽  
Joe E. Street

A 3-yr study was conducted to compare the performance of several herbicides applied alone and in mixtures under three flooding conditions in dry-seeded rice (Oryza sativaL. ‘Labelle’). When the soil remained moist during the 2-week unflooded periods (1979 and 1981), weed emergence was slowed and no advantage with respect to enhanced weed control and increased rice yields could be demonstrated over that of the standard sequential propanil (3′,4′-dichloropropionanilide) application. However, in 1980 when drought stress may have reduced initial postemergence activity and weeds emerged during the 14-day unflooded periods, differences in weed control between herbicides were obtained. Results of this study also indicate that yield losses from weed competition resulted primarily from early season competition, and that the principal advantage of the residual herbicides in dry-seeded rice may be to eliminate the need for retreatment with propanil when flooding is delayed or fields are drained.


2020 ◽  
pp. 1-5
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

Abstract Information on performance of sequential treatments of quizalofop-P-ethyl with florpyrauxifen-benzyl on rice is lacking. Field studies were conducted in 2017 and 2018 in Stoneville, MS, to evaluate sequential timings of quizalofop-P-ethyl with florpyrauxifen-benzyl included in preflood treatments of rice. Quizalofop-P-ethyl treatments were no quizalofop-P-ethyl; sequential applications of quizalofop-P-ethyl at 120 g ha−1 followed by (fb) 120 g ai ha−1 applied to rice in the 2- to 3-leaf (EPOST) fb the 4-leaf to 1-tiller (LPOST) growth stages or LPOST fb 10 d after flooding (PTFLD); quizalofop-P-ethyl at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST or LPOST fb PTFLD; quizalofop-P-ethyl at 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST and LPOST fb PTFLD; and quizalofop-P-ethyl at 85 g ha−1 fb 77 g ha−1 fb 77 g ha−1 EPOST fb LPOST fb PTFLD. Quizalofop-P-ethyl was applied alone and in mixture with florpyrauxifen-benzyl at 29 g ai ha−1 LPOST. Visible rice injury 14 d after PTFLD (DA-PTFLD) was no more than 3%. Visible control of volunteer rice (‘CL151’ and ‘Rex’) 7 DA-PTFLD was similar and at least 95% for each quizalofop-P-ethyl treatment. Barnyardgrass control with quizalofop-P-ethyl at 120 fb 120 g ha−1 LPOST fb PTFLD was greater (88%) in mixture with florpyrauxifen-benzyl. The addition of florpyrauxifen-benzyl to quizalofop-P-ethyl increased rough rice yield when quizalofop-P-ethyl was applied at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST. Sequential applications of quizalofop-P-ethyl at 120 g ha−1 fb 120 g ha−1 EPOST fb LPOST, 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST, or 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST controlled grass weed species. The addition of florpyrauxifen-benzyl was not beneficial for grass weed control. However, because quizalofop-P-ethyl does not control broadleaf weeds, florpyrauxifen-benzyl could provide broad-spectrum weed control in acetyl coenzyme A carboxylase–resistant rice.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 747-750 ◽  
Author(s):  
John T. McGregor ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Interference from broadleaf signalgrass at a density of 180 plants/m2reduced rough rice yields of ‘Bond’ a maximum of 48% at 95 days after rice emergence and reduced yields of ‘Mars' a maximum of 21% from season-long interference. Interference durations of 40 days or longer reduced the panicles/m2, culms/m2, and plant height of rice. Straw dry weight of Bond and Mars was reduced 41 and 26%, respectively, from season-long interference. Increased durations of weed interference did not affect the number of spikelets/panicle, percent filled spikelets, rough kernel weight, or head rice yield of either cultivar. Broadleaf signalgrass produced less dry weight and fewer panicles/m2when grown with Mars than with Bond.


1993 ◽  
Vol 7 (3) ◽  
pp. 600-604 ◽  
Author(s):  
Joe E. Street ◽  
Thomas C. Mueller

Field studies were conducted from 1988 to 1990 on a Sharkey clay to evaluate residual weed control in rice with quinclorac applied PPI, PRE to dry soil, and PRE to moist soil. Quinclorac applied at 0.4 or 0.6 kg ai ha−1PPI or PRE to dry or moist soil controlled more than 80% of barnyardgrass, pitted morningglory, and hemp sesbania without rice injury. Quinclorac applied at 0.3 kg ha−1controlled these three weed species substantially but inconsistently. No rice injury was observed from any quinclorac treatment. Except for one of three years when irrigation was delayed for 7 d after PRE application to dry soil, application timing did not consistently affect weed control or rice yield.


2011 ◽  
Vol 25 (4) ◽  
pp. 548-555 ◽  
Author(s):  
Dilpreet S. Riar ◽  
Jason K. Norsworthy

Research was conducted in 2009 and 2010 to evaluate influence of imazosulfuron rate and application timing on weed control in drill-seeded rice at Stuttgart, AR, and to evaluate imazosulfuron-containing herbicide programs in drill-seeded rice at Keiser and Stuttgart, AR. Weed species evaluated included barnyardgrass, broadleaf signalgrass, hemp sesbania, and yellow nutsedge. Imazosulfuron applied at 224 and 336 g ai ha−1during PRE, early POST (EPOST), or preflood (PREFLD) growth periods provided similar control of all weeds. Imazosulfuron applied EPOST or PREFLD controlled hemp sesbania and yellow nutsedge ≥ 93% both years at 5 and 7 wk after planting (WAP), except in 2009 when hemp sesbania control was ≤ 79% at 7 WAP. In 2010, because of inadequate rainfall, hemp sesbania and yellow nutsedge control with PRE-applied imazosulfuron was ≤29% at 5 and 7 WAP. Imazosulfuron plus clomazone PRE followed by (fb) quinclorac plus propanil EPOST and imazosulfuron plus quinclorac EPOST fb thiobencarb plus propanil PREFLD programs controlled hemp sesbania and barnyardgrass (in at least two site-years), and yellow nutsedge and broadleaf signalgrass (in at least one site-year) greater than or equal to clomazone plus quinclorac PRE fb propanil plus halosulfuron PRELD (standard program). No rice injury was observed with any herbicide program. Rice yield with all imazosulfuron-containing herbicide programs (6,630 to 8,130 kg ha−1) was similar to the standard herbicide program (7,240 kg ha−1). Imazosulfuron in mixture with clomazone, propanil, or quinclorac can be incorporated into herbicide programs of mid-South rice production for the control of broadleaf weeds and sedges.


Sign in / Sign up

Export Citation Format

Share Document