STRUCTURAL-PHASE COMPOSITION OF TiC/Ti COMPOSITES AND POWDERS OBTAINED BY COMBUSTION OF Ti-C GREEN MIXTURES WITH A TITANIUM EXCESS

Author(s):  
Maksim G. Krinitcyn ◽  
Elena N. Korosteleva ◽  
Anna G. Knyazeva ◽  
Evgeniya S. Sheremet
2021 ◽  
Vol 4 (5) ◽  
pp. 35-44
Author(s):  
R. El'cov

the main goal of this article is to obtain welded permanent joints of modern thermally hardened aluminum and aluminum-lithium alloys made by laser welding, having mechanical characteristics (temporary tensile resistance, yield strength, elongation at break) and structural-phase composition close to or equal to the base alloy. It is shown for the first time that by controlling the parameters of heat treatment of samples with a welded joint of all studied aluminum-lithium alloys, it is possible to purposefully influence the formation of the specified mechanical properties of the weld by changing the structural and phase composition of the weld. The evolution of the struc-tural and phase composition of welded joints of thermally hardened aluminum and aluminum-lithium alloys has been investigated using modern independent diagnostic methods: for the first time, the use of synchrotron radia-tion diffractometry in combination with high-resolution transmission, scanning electron and optical microscopy. The dependences of the increment of deformation under cyclic loading with amplitudes exceeding the elastic limit on temperature are established. For untreated welded joints, it was found that at +85 C, the inhomogeneity of the deformation increment increases, and its speed increases by 8 times for alloy 1461, 5 times for alloy 1420 and 1.5 times for alloy 1441. At a temperature of -60 0C, alloys 1420 and 1461 have hardening stages, during which the value of deformation decreases at given boundary stress values. At +20 0C, there is a uniform increment of defor-mation and an increase in the amplitude of deformation with an increase in the amplitude of stress. At +85 0C, the strain amplitude does not change with increasing stress amplitude, its value is 0.55-0.5 of the strain amplitude at +20 0C. Based on the research results, technological techniques have been developed that allow obtaining me-chanical characteristics and structural-phase compositions of welded joints close to the main alloy during laser welding of aviation thermally hardened aluminum and aluminum-lithium alloys of the Al-Mg-Cu. Al-Mg-Li, Al-Cu-Mg-Li, Al-Cu-Li systems.


2021 ◽  
Vol 2 ◽  
pp. 27-33
Author(s):  
M. G. Krinitcyn ◽  
◽  
I. A. Firsina ◽  
A. V. Baranovskiy ◽  
M. P. Ragulina ◽  
...  

Bulk samples from the powder of the MAX-phase Ti3AlC2 were obtained by selective laser sintering (SLS). A complex structural-phase study was carried out using optical and electron microscopy, as well as X-ray phase analysis, the elemental and phase composition of the samples was determined, and the morphology of the initial powders and bulk SLS samples was described. This study allowed to describe the elemental and phase composition, as well as the morphology of both the initial powders and bulk SLS samples. Modes of selective laser sintering are established at which the maximum presence of the MAX-phase in the samples after SLS is observed.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3893 ◽  
Author(s):  
Andrey G. Dormidontov ◽  
Natalia B. Kolchugina ◽  
Nikolay A. Dormidontov ◽  
Yury V. Milov

An original vision for the structural formation of (Sm,Zr)(Co,Cu,Fe)Z alloys, the compositions of which show promise for manufacturing high-coercivity permanent magnets, is reported. Foundations arising from the quantitative analysis of alloy microstructures as the first, coarse, level of heterogeneity are considered. The structure of the alloys, in optical resolutions, is shown to be characterized by three structural phase components, which are denoted as A, B, and C and based on the 1:5, 2:17, and 2:7 phases, respectively. As the chemical composition of alloys changes monotonically, the quantitative relationships of the components A, B, and C vary over wide ranges. In this case, the hysteretic properties of the (Sm,Zr)(Co,Cu,Fe)Z alloys in the high-coercivity state are strictly controlled by the volume fractions of the A and B structural components. Based on quantitative relationships of the A, B, and C structural components for the (R,Zr)(Co,Cu,Fe)Z alloys with R = Gd or Sm, sketches of quasi-ternary sections of the (Co,Cu,Fe)-R-Zr phase diagrams at temperatures of 1160–1190 °C and isopleths for the 2:17–2:7 phase composition range of the (Co,Cu,Fe)–Sm–Zr system were constructed.


2012 ◽  
Vol 190 ◽  
pp. 585-588
Author(s):  
S.F. Lomayeva ◽  
A.N. Maratkanova ◽  
Konstantin N. Rozanov ◽  
D. A. Petrov ◽  
Eugene P. Yelsukov

The structural-phase composition, magnetic and microwave properties of Fex(SiO2)1-x (x=30, 70, 90, 95) nanocomposites have been studied. The composites are produced by high-energy ball milling with either Ar or acetone as a milling medium and milling time of 1 to 64 h. The microwave magnetic properties of the composite in the frequency range of 0.1 to 6 GHz are shown to depend slightly on the phase composition and be governed mainly by the particle size. Reduction of the particle size to about 1 μm results in elimination of magnetic loss at frequencies below 1 GHz, which is attributed to the domain walls motion.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Giuseppe Cappelletti ◽  
Silvia Ardizzone ◽  
Francesca Spadavecchia ◽  
Daniela Meroni ◽  
Iolanda Biraghi

Mesoporous TiO2nanocrystals have been synthetized by a classical sol-gel route integrated by an hydrothermal growth step using monomeric (dodecylpyridinium chloride, DPC) or dimeric gemini-like (GS3) surfactants as template directing agents. Adsorption isotherms at the solid/liquid interface of the two surfactants have been obtained on aqueous dispersion of titania; the nature of the oxide/adsorbate interactions and the molecules orientation/coarea are discussed. The effects produced by the presence of the two surfactants on the different morphological (surface area, porosity, and shape) and structural (phase composition and aggregate size) features of the final TiO2samples, calcined at600∘C, are discussed.


2005 ◽  
Vol 41 (5) ◽  
pp. 465-471
Author(s):  
S. F. Lomayeva ◽  
B. B. Bokhonov ◽  
A. V. Syugaev ◽  
E. P. Elsukov ◽  
S. M. Reshetnikov

Author(s):  
М. A. Belotserkovsky ◽  
V. A. Kukareko ◽  
Yu. S. Korobov ◽  
E. V. Astrashab ◽  
I. I. Grigorchik

The structural‑phase state of the gas‑thermal coating made of Fe‑Cr‑Ni‑Al pseudo‑alloy in the initial state, as well as after annealing in the temperature range 550–650 °C for 20–60 minutes, has been investigated. It has been established that the phase composition of the Fe‑Cr‑Ni‑Al pseudo‑alloy in the initial state includes mainly Al and α‑Fe, and its porosity does not exceed 3–5 vol.%. Annealing of a thermal spray coating from a pseudo‑alloy at temperatures of 550–650˚C for 20–60 minutes leads to the release of iron‑aluminum intermetallic compounds Fe3Al, Al13Fe4 and Al5Fe2, an increase in hardness and porosity.


Sign in / Sign up

Export Citation Format

Share Document