Effect of Intial Temperature of a Hot Steel Plate on Thermal Performance of Impinging Jets During Quenching Processes

Author(s):  
Tae Hoon Kim ◽  
Kyu Hyung Do ◽  
Dong-Wook Oh ◽  
Jungho Lee ◽  
Jang-Min Park
Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Sang Gun Lee ◽  
Jin Sub Kim ◽  
Dong Hwan Shin ◽  
Jungho Lee

The effect of staggered-array water impinging jets on boiling heat transfer was investigated by a simultaneous measurement between boiling visualization and heat transfer characteristics. The boiling phenomena of staggered-array impinging jets on hot steel plate were visualized by 4K UHD video camera. The surface temperature and heat flux on hot steel plate was determined by solving 2-D inverse heat conduction problem, which was measured by the flat-plate heat flux gauge. The experiment was made at jet Reynolds number of Re = 5,000 and the jet-to-jet distance of staggered-array jets of S/Dn = 10. Complex flow interaction of staggered-array impinging jets exhibited hexagonal flow pattern like as honey-comb. The calculated surface heat transfer profiles show a good agreement with the corresponding boiling visualization. The peak of heat flux accords with the location which nucleate boiling is occurred at. In early stage, the positions of maximum heat flux locate at the stagnation point of each jet as the relatively low surface temperature is shown at their positions. At the elapsed time of 10 s, the flat shape of heat flux profile is formed in the hexagonal area where the interacting flow uniformly cools down the wetted surface. After that, the wetted area continuously enlarges with time and the maximum heat flux is observed at its peripheral. These results point out that the flow interaction of staggered-array jets effectively cools down the closer area around jets and also show an expansion of nucleate boiling and suppression of film boiling during water jet cooling on hot steel plate. [This work was supported by the KETEP grant funded by the Ministry of Trade, Industry & Energy, Korea (Grant No. 20142010102910).]


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Jungho Lee ◽  
Sangho Sohn ◽  
Sang Gun Lee

The simultaneous measurement between the boiling visualization and the boiling heat transfer characteristics by two adjacent impinging jets on hot steel plate was made by the experimental technique that has a function of high-temperature flat-plate heat flux gauge. The 22 K-type thermocouples were installed at 1 mm below the surface of flat-plate heat flux gauge. The 2-D inverse heat conduction was formulated to solve the surface temperature and heat flux. The boiling visualization was synchronized with a 4K video camera which was meaningful to understand complex boiling heat transfer phenomena. The heat flux gauge was uniformly heated up to 900°C by induction heating. The successive boiling images show where the nucleate boiling starts to occur on hot surface and the film boiling turns to be collapsed. The measured surface temperature and heat flux distribution agrees well with the corresponding boiling visualization: While heat transfer at the stagnation point shows a maximum heat flux, the interaction between two adjacent impinging jets exhibits a relative high heat flux and a steep temperature gradient until the end of boiling heat transfer at which single-phase convection occurs near 200°C.


Author(s):  
Stephen A. Solovitz ◽  
Thomas E. Conder

Modern advancements in transistor technology have pushed thermal dissipations from power electronics near the edge of the capability of single-phase micro-channel designs. To alleviate this problem, researchers have begun investigating enhancements to these designs, using methods such as pin fins, turbulators, and impinging jets. These techniques can potentially enhance the convective thermal performance by a factor of 2 to 3, although they do incur a similar magnitude pressure penalty. However, because of the requirements of electrical isolation and mechanical assembly, much of this benefit is tempered, as the convective thermal resistance is only a small fraction of the total resistance. This limitation can be removed through the use of an integral package design where the heat sink passages are fashioned in the electrical stack, which can reduce the conductive resistance until convective enhancements are significant again. These methods include fabrication of micro-channels directly into the active metal braze substrate and potentially even the electrical insulation layer. Thus, while a traditional, non-integral design only experiences a 5% overall benefit when the convective resistance is reduced by 50%, an integral package can have a 20 to 30% improvement for the same enhancement. To examine this capability, a series of computational fluid dynamics studies were conducted to study the performance of several integral micro-channel heat sink configurations. These simulations determined the response for a range of coolants, flowrates, device power dissipations, and operating conditions. These results will serve as a baseline for further development of enhanced, integral micro-channel designs.


2020 ◽  
Vol 3 (2) ◽  
pp. 28-35
Author(s):  
Abdullah AlEssa

The Integrated Collector Storage (ICS) has a great application in the solar energy field such as instantaneous heating with little initial and operation cost as well as its resistance against the problems of overheating and freezing. In this research, an advanced ICS was designed and investigated with an array of 1.5 mm thickness galvanized lateral steel plate fins fixed in the storage tank. The new design was examined from 7:00 a.m. until 5:00 p.m. The results show an increase in mean storage temperature and collection efficiency of up to 20% and 37% respectively


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Sign in / Sign up

Export Citation Format

Share Document