Research on the Influence of Different Curing regime on the Performance of the Self-Compacting High-Performance concrete

Author(s):  
J. Yin
Author(s):  
J.L. García Calvo ◽  
G. Pérez ◽  
P. Carballosa ◽  
E. Erkizia ◽  
J.J. Gaitero ◽  
...  

2011 ◽  
Vol 374-377 ◽  
pp. 1827-1830
Author(s):  
Wei Wei Yu ◽  
Qing Xiong ◽  
Yun Yu ◽  
Hang Lin

This paper focuses on the impact which polypropylene fiber (PF) has on the self-desiccation effect at early age of high performance concrete (HPC). The experimental results indicate that PF has little influence on the Internal Relative Humidity (IRH) caused by self-desiccation effect of concrete, but can reduce early aged self-desiccation shrinkage of concrete. With the PF dosage increasing, the values of early self-desiccation shrinkage of HPC decrease first and then increase. In the experimental conditions, the value of self-desiccation shrinkage of concrete with 0.6Kg/m3 PF is the lowest one.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Owi Siew Feen ◽  
Roslli Noor Mohamed ◽  
Azman Mohamed ◽  
Nur Hafizah A. Khalid

Self-compacting lightweight concrete (SCLWC) is an innovative high performance concrete which uses palm oil clinker (POC), a waste by-product from the palm oil industry, as the lightweight aggregates. This paper presents a research on the effects of utilising only POC as coarse aggregates on the fresh and hardened properties of SCLWC. Properties of SCLWC were compared to self-compacting concrete (SCC) containing crushed granite aggregates. Tests of slump flow, V-funnel, J-ring, L box and sieve segregation were conducted to characterise the self-compactability in fresh state. The hardened concrete specimens were tested for density, water absorption, ultrasonic pulse velocity (UPV), compression, tensile splitting and flexural. Results revealed that both mixes had fulfilled the self-compactability requirements as per European Guidelines whereby the fresh SCLWC exhibited better filling ability and passing ability at low segregation resistance. The inclusion of coarse POC reduced the concrete density and strength, but the SCLWC exhibited good UPV values despite greater porosity in the concrete. It can be concluded that the POC can be potentially used as coarse aggregates for producing SCLWC to manage the waste and promote environmental sustainability. 


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 215
Author(s):  
Dong Lu ◽  
Jing Zhong ◽  
Baobao Yan ◽  
Jing Gong ◽  
Ziye He ◽  
...  

It has been reported that iron tailing powder (ITP) has the potential to partially replace cement to prepare ultra-high-performance concrete (UHPC). However, the reactivity of ITP particles in concrete largely depends on the curing method. This study investigates the effects of curing conditions on the mechanical and microstructural properties of UHPC containing ITP. To achieve this objective, three research tasks are conducted, including (1) preparing seven concrete formulations by introducing ITP; (2) characterizing their mechanical performance under different curing regimes; and (3) analyzing their microstructure by XRD patterns, FTIR analysis, and SEM observation. The experimental results show that there is an optimum ITP dosage (15%) for their application. The concrete with 15% ITP under standard curing obtains 94.3 MPa at 7 days, their early-age strength could be even further increased by ~30% (warm-water curing) and ~35% (steamed curing). The steam curing regime stimulates the activity of ITP and refines the microstructure. This study demonstrates the potential of replacing Portland cement with ITP in UHPC production.


Sign in / Sign up

Export Citation Format

Share Document