scholarly journals Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor β through the phosphatidylinositol 3-kinase pathway

2006 ◽  
Vol 4 (1) ◽  
pp. nrs.04020 ◽  
Author(s):  
Lars C. Moeller ◽  
Xia Cao ◽  
Alexandra M. Dumitrescu ◽  
Hisao Seo ◽  
Samuel Refetoff

Thyroid hormone (TH) action is mediated principally through binding of the hormone ligand, 3,3,5-triiodothyronine (T3), to TH receptors (TRs). This hormone-receptor interaction recruits other proteins to form complexes that regulate gene expression by binding to DNA sequences in the promoter of target genes. We recently described an extranuclear mechanism of TH action that consists of the association of TH-liganded TRβ with p85α [regulatory subunit of phosphatidylinositol 3-kinase (PI3K)] in the cytosol and subsequent activation of the PI3K, generating phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3]. This initiates the activation of a signaling cascade by phosphorylation of Akt, mammalian target of rapamycin (mTOR) and its substrate p70S6K, leading to the stimulation of ZAKI-4α synthesis, a calcineurin inhibitor. Furthermore, we found that this same mechanism leads to induction of the transcription factor hypoxia-inducible factor (HIF-1α), and its target genes, glucose transporter (GLUT)1, platelet-type phosphofructokinase (PFKP), and monocarboxylate transporter (MCT) 4. These genes are of special interest, because their products have important roles in cellular glucose metabolism, from glucose uptake (GLUT1) to glycolysis (PFKP) and lactate export (MCT4). These results demonstrate that the TH-TRβ complex can exert a non-genomic action in the cytosol leading to changes in gene expression by direct (HIF-1α) and indirect (ZAKI-4α, GLUT1, PFKP) means.

2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.


2008 ◽  
Vol 41 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Maciej Pietrzak ◽  
Monika Puzianowska-Kuznicka

Triiodothyronine (T3) regulates apoptosis in cells according to their developmental stage, cell type, and pathophysiological state. The molecular mechanisms of this regulation, however, have been largely unknown. In this work, we show that the expression of the myeloid cell leukemia-1 (MCL-1) protein, an anti-apoptotic member of B-cell lymphoma-2 (BCL-2) family, increases in thyroid hormone receptor-expressing human kidney-2 (HK2) cells upon 6-h incubation in 100 nM T3; we also describe the molecular mechanisms leading to this phenomenon. Transcription regulation assays performed in human embryonic kidney (HEK) 293 cells show that 100 nM T3 increases transcription from the MCL-1 promoter twofold in the presence of thyroid hormone receptor β1, but not of its α1 isoform. However, this increase is not a result of direct activation via the thyroid hormone-response element, TRE-DR4, located at the −998 to −983 position in this promoter; furthermore, the presence of 9-cis-retinoic acid receptor is not required. The promoter's activation is abolished in the presence of phosphatidylinositol 3-kinase (PI3-K) inhibitor, wortmannin. The −295 to −107 promoter fragment contains all sequences involved in T3-dependent activation of the MCL-1 promoter, and cAMP-responsive element located at the −262 to −255 position is a major mediator in this process. Therefore, MCL-1 expression is activated by T3, which increases its promoter activity by a non-genomic mechanism using the PI3-K signal transduction pathway. We propose that this is another mechanism by which T3 regulates apoptosis.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2241-2250 ◽  
Author(s):  
Teresa Otto ◽  
Joachim Fandrey

Thyroid hormones are important regulators of differentiation, growth, metabolism, and physiological function of virtually all tissues. Active thyroid hormone T3 affects expression of genes that encode for angiogenic proteins like adrenomedullin or vascular endothelial growth factor and erythropoietin, as well as for glucose transporters and phospho fructokinase that determine glucose use. Interestingly, those target genes are also hypoxia inducible and under the control of the oxygen-dependent transcription factor hypoxia-inducible factor (HIF)-1). We and others have reported that T3 stimulates HIF-1 activation, which intimately links T3 and HIF-1 induced gene expression. Here, we studied intracellular pathways that mediate HIF-1α regulation by T3. We found that T3-dependent HIF-1 activation is not limited to hepatoma cells but is also observed in primary human hepatocytes, kidney and lung carcinoma cells. T3 increased the HIF-1α subunit mRNA and protein within a few hours through activation of the thyroid hormone receptor β retinoid X receptor α heterodimer because knockdown of each of the partners abrogated the stimulation by T3. However, T3 had no direct effect on transcription of HIF-1α, but activation of the thyroid hormone receptor β/retinoid X receptor α heterodimer by T3 stimulated expression of the hepatic leukemia factor, which increases HIF-1α gene expression.


2008 ◽  
Vol 411 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Kyung-Chul Choi ◽  
So-Young Oh ◽  
Hee-Bum Kang ◽  
Yoo-Hyun Lee ◽  
Seungjoo Haam ◽  
...  

A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (β-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.


1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089 ◽  
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


Sign in / Sign up

Export Citation Format

Share Document