Development of an Endogenous Virus–Free Line of Chickens Susceptible to All Subgroups of Avian Leukosis Virus

2008 ◽  
Vol 52 (3) ◽  
pp. 412-418 ◽  
Author(s):  
Huanmin Zhang ◽  
Larry D. Bacon ◽  
Aly M. Fadly
1998 ◽  
Vol 72 (12) ◽  
pp. 10301-10304 ◽  
Author(s):  
Scott J. Benson ◽  
Brian L. Ruis ◽  
Amy L. Garbers ◽  
Aly M. Fadly ◽  
Kathleen F. Conklin

ABSTRACT A new subgroup of avian leukosis virus (ALV) that includes a uniqueenv gene, designated J, was identified recently in England. Sequence analysis of prototype English isolate HPRS-103 revealed several other unique genetic characteristics of this strain and provided information that it arose by recombination between exogenous and endogenous virus sequences. In the past several years, ALV J type viruses (ALV-J) have been isolated from broiler breeder flocks in the United States. We were interested in determining the relationship between the U.S. and English isolates of ALV-J. Based on sequence data from two independently derived U.S. field isolates, we conclude that the U.S. and English isolates of ALV-J derive from a common ancestor and are not the result of independent recombination events.


2021 ◽  
Vol 7 ◽  
Author(s):  
Ning Cui ◽  
Xuezhi Cui ◽  
Qinghua Huang ◽  
Shaohua Yang ◽  
Shuai Su ◽  
...  

Avian leukosis virus (ALV) continues evolving to obtain new genomic characters to enhance its pathogenicity. In the present study, an ALV-J strain LH20180301 was isolated from broiler breeder chickens that reached the speak of paralyzation before 20-week-old. The necropsy chickens showed subcutaneous and muscular hemorrhage, and developed tumors in multiple organs including bone, liver, spleen, and kidney. The complete provirus was then cloned and sequenced to investigate the molecular characteristics and oncogenicity etiology of this virus associated with the outbreak of disease. The genomic structure of the reported ALV-J strain LH20180301 was highly conservative with other ALVs. Recombination events between the virus with endogenous virus were identified in the viral genome. Compared with the ALV-J original HPRS-103 strain, the major recombination sites of the viral genome with ev-1 were located in 5′ UTR-gag and 3′ UTR regions. Phylogenetic analysis of group specific antigen gp85 encoding protein showed that the LH20180301 branched with ALV-J prevalent in “yellow chickens” of local breeds in South China. Nine amino acids (N58, D60, K70, A71, K108, N112, N113, N121, R272) in the gp85 were highly conserved among ALV-J isolates before 2012, but various mutations were found in the late isolates including LH20180301. In addition, the LH20180301 strain also had the same deletion pattern of 3′ UTR with them. Therefore, LH20180301 might derive from the same ancestor with those viruses and may be the trend of ALV-J evolution in China. The defined new genomic characters in the gp85 and 3′ UTR region of ALV-J might provide the molecular basis for its enhanced oncogenicity.


Author(s):  
N. Savage ◽  
A. Hackett

A cell line, UC1-B, which was derived from Balb/3T3 cells, maintains the same morphological characteristics of the non-transformed parental culture, and shows no evidence of spontaneous virus production. Survey by electron microscopy shows that the cell line consists of spindle-shaped cells with no unusual features and no endogenous virus particles.UC1-B cells respond to Moloney leukemia virus (MLV) infection by a change in morphology and growth pattern which is typical of cells transformed by sarcoma virus. Electron microscopy shows that the cells are now variable in shape (rounded, rhomboid, and spindle), and each cell type has some microvilli. Virtually all (90%) of the cells show virus particles developing at the cell surface and within the cytoplasm. Maturing viruses, typical of the oncogenic viruses, are found along with atypical tubular forms in the same cell.


Epidemiologia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 46-67
Author(s):  
Antoinette C. van der Kuyl

Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.


Sign in / Sign up

Export Citation Format

Share Document