scholarly journals Spatially Fractionated Microbeam Analysis of Tissue-sparing Effect for Spermatogenesis

2020 ◽  
Vol 194 (6) ◽  
Author(s):  
Hisanori Fukunaga ◽  
Kiichi Kaminaga ◽  
Takuya Sato ◽  
Karl T. Butterworth ◽  
Ritsuko Watanabe ◽  
...  
2021 ◽  
Author(s):  
Hisanori Fukunaga

Stem cell responses in tissues after exposure to radiation are of significance for maintaining tissue functions. From the point of view of stem cell characteristics, this article seeks to illustrate some contributions of microbeam research to spatially fractionated radiotherapy (SFRT), such as grid radiotherapy and microbeam radiotherapy. Although the tissue-sparing response after SFRT was first reported more than a century ago, current radiation dose–volume metrics are still unable to accurately predict such tissue-level changes in response to spatially fractionated radiation fields. However, microbeam approaches could contribute to uncovering the mechanisms of tissue response, significantly improving the outcomes of SFRT and reducing its adverse effects. Studies with microbeams have shown that the testicular tissue-sparing effect for maintaining spermatogenesis after exposure to spatially fractionated radiation depends on biological parameters, such as the radiation dose distribution at the microscale level for tissue-specific stem cells and the microenvironment, or niche. This indicates that stem cell survival, migration, and repopulation are involved in the tissue-level changes during or after SFRT. The illustration of microbeam applications in this article focuses on the stem cell migration as a possible mechanism of the tissue-sparing effect for preserving functionality.


Author(s):  
Abida Sultana ◽  
Ahmed Alanazi ◽  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin

Monte Carlo multi-track chemistry simulations were carried out to study the effects of high dose rates on the transient yields of hydronium ions (H<sub>3</sub>O<sup>+</sup>) formed during low linear energy transfer (LET) radiolysis of both pure, deaerated and aerated liquid water at 25 °C, in the interval ~1 ps–10 μs. Our simulation model consisted of randomly irradiating water with <i>N</i> interactive tracks of 300-MeV incident protons (LET ~ 0.3 keV/μm), which simultaneously impact perpendicularly on the water within a circular surface. The effect of the dose rate was studied by varying <i>N</i>. Our calculations showed that the radiolytic formation of H<sub>3</sub>O<sup>+</sup> causes the entire irradiated volume to temporarily become very acidic. The magnitude and duration of this abrupt “acid-spike” response depend on the value of <i>N</i>. It is most intense at times less than ~10–100 ns, equal to ~3.4 and 2.8 for <i>N</i> = 500 and 2000 (<i>i.e.</i>, for dose rates of ~1.9 × 10<sup>9</sup> and 8.7 × 10<sup>9</sup> Gy/s, respectively). At longer times, the pH gradually increases for all <i>N</i> values and eventually returns to the neutral value of seven, which corresponds to the non-radiolytic, pre-irradiation concentration of H<sub>3</sub>O<sup>+</sup>. It is worth noting that these early acidic pH responses are very little dependent on the presence or absence of oxygen. Finally, given the importance of pH for many cellular functions, this study suggests that these acidic pH spikes may contribute to the normal tissue-sparing effect of FLASH radiotherapy.


2020 ◽  
Vol 9 (4) ◽  
pp. 1089
Author(s):  
Hisanori Fukunaga ◽  
Kiichi Kaminaga ◽  
Takuya Sato ◽  
Ritsuko Watanabe ◽  
Takehiko Ogawa ◽  
...  

Radiotherapy can result in temporary or permanent gonadal toxicity in male cancer patients despite the high precision and accuracy of modern radiation treatment techniques. Previous radiobiological studies have shown an effective tissue-sparing response in various tissue types and species following exposure to spatially fractionated radiation. In the present study, we used an ex vivo mouse testicular tissue culture model and a conventional X-ray irradiation device to evaluate the tissue-sparing effect (TSE) of spatially fractionated X-rays for the protection of male fertility from radiotherapy-related adverse effects. We revealed a significant TSE for maintaining spermatogenesis in the ex vivo testes model following spatially fractionated X-ray irradiation. Moreover, we experimentally propose a possible mechanism by which the migration of spermatogonial cells, from the non-irradiated areas to the irradiated ones, in irradiated testicular tissue, is essential for the TSE and maintaining spermatogenesis. Therefore, our findings demonstrate that the control of TSE following spatially fractionated X-rays in the testes has a considerable potential for clinical application. Interdisciplinary research will be essential for further expanding the applicability of this method as an approach for the preservation of male fertility during or after radiotherapy.


2012 ◽  
Vol 82 (4) ◽  
pp. e693-e700 ◽  
Author(s):  
Pierre Deman ◽  
Mathias Vautrin ◽  
Magali Edouard ◽  
Vasile Stupar ◽  
Laure Bobyk ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hisanori Fukunaga ◽  
Kiichi Kaminaga ◽  
Takuya Sato ◽  
Karl T. Butterworth ◽  
Ritsuko Watanabe ◽  
...  

Abstract Microbeam radiotherapy (MRT) is based on a spatial fractionation of synchrotron X-ray microbeams at the microscale level. Although the tissue-sparing effect (TSE) in response to non-uniform radiation fields was recognized more than one century ago, the TSE of MRT in the testes and its clinical importance for preventing male fertility remain to be determined. In this study, using the combination of MRT techniques and a unique ex vivo testes organ culture, we show, for the first time, the MRT-mediated TSE for the preservation of spermatogenesis. Furthermore, our high-precision microbeam analysis revealed that the survival and potential migration steps of the non-irradiated germ stem cells in the irradiated testes tissue would be needed for the effective TSE for spermatogenesis. Our findings indicated the distribution of dose irradiated in the testes at the microscale level is of clinical importance for delivering high doses of radiation to the tumor, while still preserving male fertility.


2007 ◽  
Vol 35 (4) ◽  
pp. 69-77 ◽  
Author(s):  
F. Avraham Dilmanian ◽  
Yun Qu ◽  
Ludwig E. Feinendegen ◽  
Louis A. Peña ◽  
Tigran Bacarian ◽  
...  

Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Sign in / Sign up

Export Citation Format

Share Document