Influence of habitat structure and fruit availability on use of a northeastern stopover site by fall songbirds

2013 ◽  
Vol 125 (4) ◽  
pp. 744-754 ◽  
Author(s):  
Brad M. Mudrzynski ◽  
Christopher J. Norment
Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 855
Author(s):  
Roger Puig-Gironès ◽  
Pere Pons

Faunal responses to wildfire depend on the fire effects on direct mortality, habitat structure, and resource availability for animals. Despite the importance of large predators in terrestrial trophic webs, little is still known about how fire affects carnivorans (the mammalian order Carnivora). To evaluate the responses of the carnivoran community to fire, we studied three recently burnt forest areas in the western Mediterranean basin. Line transects were used to quantify evidence of carnivorans (mainly feces) and to measure environmental variables and resources (small mammal abundance, fleshy fruit availability, and plant cover). Throughout the study, we found 212 carnivoran field signs, 93% of them produced by red fox and stone marten. Immediately after fire, carnivoran occurrence was more frequent close to the perimeter of the burnt area, where fire severity was low, and in places with greater small mammal abundance. Small mammal abundance and plant cover had the greatest effect on the frequency of occurrence of red fox in the burnt area surroundings, and this increased with time-since-fire in the burnt area. Furthermore, the presence of red fox did not affect stone marten occurrence. Stone martens were found around the burnt area perimeter, probably because of their preference for high plant cover, and they were not significantly affected by small mammal abundance. The scat frequency of occurrence of both species was not significantly related to fleshy fruit availability. Accordingly, rodents and carnivorans were more abundant where the habitat was more complex. Our results show that the responses of some carnivorans to fire are influenced, directly and indirectly, by habitat structure and resource availability.


2010 ◽  
Vol 60 (4) ◽  
pp. 423-436 ◽  
Author(s):  
Sara Cabezas-Díaz ◽  
Emilio Virgós ◽  
Jorge Lozano ◽  
Julián Mangas

AbstractFleshy-fruit availability is rarely used as a predictor in stone marten (Martes foina) habitat models, despite its frugivorous carnivore diet. Data on stone marten occurrence, habitat structure and fleshy-fruit species abundance was collected along 2 km long survey routes within 2 × 2 km sample plots (n = 30). Two different spatial scales were considered: 1) the entire survey route; and 2) 200 m segments within each 2 km survey route. Data analyses included Poisson General Linear Models (GLM) and Generalized Linear Mixed Models (GLMM) for the first and second approaches, respectively.Strawberry tree (Arbutus unedo) availability was significantly and positively correlated to stone marten occurrence at both spatial scales, particularly for the large-scale model. At the larger scale, a lower correlation to the traditional habitat structure variables was observed. Tree cover was the most important variable in the small-scale model, but strawberry tree availability was also an important predictor. Stone marten abundance was low in areas of high tree cover and absence of strawberry trees; emphasising the prominent role of strawberry trees per se in the abundance of stone martens. Our results indicated that including fine, field-derived estimates of key food resources for species can increase the utility of habitat models.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Jonas Wobker ◽  
Wieland Heim ◽  
Heiko Schmaljohann

Abstract Sex- and age-specific differences in the timing of migration are widespread among animals. In birds, common patterns are protandry, the earlier arrival of males in spring, and age-differential migration during autumn. However, knowledge of these differences stems mainly from the Palearctic-African and Nearctic-Neotropical flyways, while detailed information about the phenology of migrant birds from the East Asian flyway is far scarcer. To help fill parts of this gap, we analyzed how migration distance, sex, age, and molt strategy affect the spring and autumn phenologies of 36 migrant songbirds (altogether 18,427 individuals) at a stopover site in the Russian Far East. Sex-differential migration was more pronounced in spring than in autumn, with half of the studied species (6 out of 12) showing a protandrous migration pattern. Age-differences in migration were rare in spring but found in nearly half of the studied species (11 out of 25) in autumn. These age effects were associated with the birds’ molt strategy and the mean latitudinal distances from the assumed breeding area to the study site. Adults performing a complete molt before the onset of autumn migration passed the study site later than first-year birds undergoing only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. These sex-, age-, and molt-specific migration patterns agree with those found along other flyways and seem to be common features of land bird migration strategies. Significance statement The timing of animal migration is shaped by the availability of resources and the organization of annual cycles. In migrant birds, sex- and age-differential migration is a common phenomenon. For the rarely studied East Asian flyway, we show for the first time and based on a large set of migrant songbirds that earlier migration of males is a common pattern there in spring. Further, the timing and extent of molt explained age-differential migration during autumn. Adults molting their complete plumage at the breeding area before migration showed delayed phenology in comparison to first-year birds, which perform only a partial molt. This pattern, however, reversed with increasing migration distance to the study site. Since our results agree with the general patterns from the other migration flyways, similar drivers for differential migration may act across different flyway systems, provoking a similar evolutionary response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Bian ◽  
Angela Pinilla ◽  
Tom Chandler ◽  
Richard Peters

AbstractHabitat-specific characteristics can affect signal transmission such that different habitats dictate the optimal signal. One way to examine how the environment influences signals is by comparing changes in signal effectiveness in different habitats. Examinations of signal effectiveness between different habitats has helped to explain signal divergence/convergence between populations and species using acoustic and colour signals. Although previous research has provided evidence for local adaptations and signal divergence in many species of lizards, comparative studies in movement-based signals are rare due to technical difficulties in quantifying movements in nature and ethical restrictions in translocating animals between habitats. We demonstrate herein that these issues can be addressed using 3D animations, and compared the relative performance of the displays of four Australian lizard species in the habitats of each species under varying environmental conditions. Our simulations show that habitats differentially affect signal performance, and an interaction between display and habitat structure. Interestingly, our results are consistent with the hypothesis that the signal adapted to the noisier environment does not show an advantage in signal effectiveness, but the noisy habitat was detrimental to the performance of all displays. Our study is one of the first studies for movement-based signals that directly compares signal performance in multiple habitats, and our approach has laid the foundation for future investigations in motion ecology that have been intractable to conventional research methods.


2020 ◽  
Vol 46 (1) ◽  
pp. 86-97
Author(s):  
Esperanza C. Iranzo ◽  
Juan Traba ◽  
Cristina Mata ◽  
Pablo Acebes ◽  
Juan E. Malo

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Ferretti ◽  
Scott R McWilliams ◽  
Niels C Rattenborg ◽  
Ivan Maggini ◽  
Massimiliano Cardinale ◽  
...  

Synopsis Little is known about how songbirds modulate sleep during migratory periods. Due to the alternation of nocturnal endurance flights and diurnal refueling stopovers, sleep is likely to be a major constraint for many migratory passerine species. Sleep may help to increase the endogenous antioxidant capacity that counteracts free radicals produced during endurance flight and reduces energy expenditure. Here, we investigated the relationship between sleep behavior, food intake, and two markers of physiological condition—the amount of energy reserves and oxidative status—in two migratory songbird species, the garden warbler (Sylvia borin) and the whitethroat (Sylvia communis). In garden warblers, birds with high energy stores were more prone to sleep during the day, while this condition-dependent sleep pattern was not present in whitethroats. In both species, birds with low energy stores were more likely to sleep with their head tucked in the feathers during nocturnal sleep. Moreover, we found a positive correlation between food intake and the extent of energy reserves in garden warblers, but not in whitethroats. Finally, we did not find significant correlations between oxidative status and sleep, or oxidative status and energy stores. Despite our study was not comparative, it suggests that different species might use different strategies to manage their energy during stopover and, additionally, it raises the possibility that migrants have evolved physiological adaptations to deal with oxidative damage produced during migration.


Sign in / Sign up

Export Citation Format

Share Document